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Executive summary 
Interest in the use of high frequency (continuous) in-situ nitrate-nitrogen (nitrate-N) sensors is 

starting to increase in New Zealand, with NIWA and several regional councils now managing several 

deployments in riverine environments.  Use of in-situ sensors reflects a growing recognition that 

monthly spot (discrete) water quality measurements obtained from traditional State of the 

Environment (SoE) monitoring programmes cannot capture or characterise rapid changes in water 

quality that can affect human and aquatic health.   

In 2017/18 NIWA, Environment Southland (ES), Otago Regional Council (ORC) and Environment 

Canterbury jointly scoped a project for NIWA to review the data collected from some existing in-situ 

nitrate-N sensor deployments.  The council contribution to the project was provided through an 

MBIE Envirolink Large Advice Grant and required NIWA to prepare guidance and other information, 

including: 

▪ An overview of the principle for measuring nitrate-N, with specific attention to the 

effect that factors such as optical pathlength and water matrix have on routine 

measurement.   

▪ Documentation of key learnings from practical experience and the technical literature 

that will eventually contribute to a comprehensive guidance document or Standard 

Operating Procedure, likely to become one of the series of National Environmental 

Monitoring Standards (NEMS) documents that have been developed by multi-agency 

consortia. 

▪ An overview of some existing data from Southland and Otago rivers, including the uses 

to which these data may be put. 

A workshop was convened in the latter stages of the project to discuss the experiences of 

practitioners involved with sensor deployment, operation and maintenance, and to present some of 

the outcomes from the data analysis.  

Ultra-violet (UV)-visible spectroscopy is a well-established procedure for measuring nitrate-N in 

water.  The limitations of the procedure have also been well-documented.  Coupling miniaturised 

spectrophotometers with data algorithms has overcome some of these challenges for specific classes 

of water, allowing routine unattended collection of in-situ data. Factors likely to influence 

performance of in-situ nitrate-N sensors include interferences (specifically dissolved organic matter 

and suspended sediment), the algorithms used to convert spectral data into nitrate concentration 

values, the trade-off between optical pathlength, sensor accuracy and detection limit, and evaluation 

of instrument precision and accuracy. 

The basic requirements of draft procedures for instrument selection, preparation, deployment and 

management in the field have been identified.  Several quality assurance requirements are 

described, including the importance of local calibration (optimising calibration to account for specific 

water matrix effects), use of calibration standards, and the requirement for routine sensor inspection 

and cleaning.  Requirements for analysis of high frequency nitrate-N data are also covered, including 

data management, handling and graphical procedures.  The large volume of data potentially derived 

from spectrophotometers provides several challenges that may not be encountered when dealing 

with hydrometric data, or with water quality data derived from discrete grab samples.  The logical 
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next step is development of a formal procedures document, most likely in the form of a NEMS.  The 

information in this document will assist with this. 

Several case studies are presented covering the Kakanui, Aparima and Mataura rivers which describe 

data handling procedures in detail, and the effects of several routine operation procedures (e.g., 

cleaning events, location of deployment within-channel or adjacent to channel), and the effects of 

transient spikes.  Specific uses of continuous data are presented, including: 

Evaluating the relationship between discrete grab sample and continuous data  
In all cases, good relationships between grab water quality samples and spectral data were achieved 

over a wide range of nitrate-N concentration values, and under a wide range of river discharge 

conditions.  In several cases, a bias between grab sample estimates and in-situ sensor results was 

demonstrated, but the bias was consistent over the concentration range, and could be addressed 

simply using regression techniques to produce corrected data. 

Understanding flow and concentration dynamics, and how this knowledge may be used to 
identify contaminant mobilisation processes within catchments    
High frequency sensors provide information-rich data sets that allow discharge-concentration 

relationships to be determined during multiple flood events under different seasonal conditions.  

This information provides insights regarding contaminant mobilisation, which may be used to guide 

the selection and use of mitigation strategies. 

Understanding short-term variability and potential drivers of this variability   
High frequency data reveal diurnal trends in nitrate-N concentration similar to those previously 

identified for water quality variables such as dissolved oxygen and pH.  Published work reveals that 

these data may be used to provide information regarding nutrient cycling and short-term ecological 

processes.  Although the latter may be of limited immediate use to most councils, high frequency 

data are immediately useful for nitrate load or flux estimation (summarised below). 

Trend assessment    
Assessment of long-term trends in concentrations of key water quality variables (e.g., nitrogen and 

phosphorus) is an essential component of water resource management, and underpins national and 

regional policy and regulatory activities.  Although the record of data assessed in this report was too 

short for estimating long-term trend, the high frequency data will ultimately be very useful when 

making these assessments.  The case studies indicate that for a medium-sized New Zealand river 

(e.g., Kakanui), estimates of concentration at frequencies greater than fortnightly appear necessary 

to provide trend estimates over two-year periods.  As a corollary, this information implies that very 

high frequency measurement (say sub-hourly) is not necessary for this purpose. 

Nitrate-N load estimation    
Well-established modelling techniques exist to estimate nutrient annual loads or flux (instantaneous 

loads) using grab sample concentration data and continuous river discharge data.  The performance 

of these models is improved by collection of flow-related samples, particularly during storm events 

and during influential seasonal conditions.  Having demonstrated robust relationships between high-

frequency sensor values and grab sample concentration data, it is possible to estimate nitrate-N 

loads very simply as the product of estimated concentration and river flow or discharge.  The case 

studies indicate that reasonable estimates of annual nitrate-N load may be derived from sensor data 

collected at daily frequency.  The uncertainty in the load estimation decreases as the frequency of 

concentration measurement increases.   
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A key finding from assessing different applications of the case study data was that it is important to 

determine the appropriate measurement frequency. In several case study examples, subsets of data 

derived from five and ten- minute frequency data were generated, and these were used to repeat 

load estimation and trend assessments.  Comparison of the results derived from these subsets help 

identify “suitable” measurement frequencies.  It is apparent that unless very short-term information 

requirements exist (e.g., providing event-based load estimates), it is difficult to justify measurement 

in larger rivers at frequencies greater than one hour.  Case study results suggest that daily 

measurements appear adequate for most purposes.  Reducing measurement frequency provides 

several benefits: 

i. fewer measurements will prolong the life of the lamp used as the basis of the 

measurement, and delay onset of drift in the lamp intensity 

ii. fewer data will be generated, requiring less storage volume, and  

iii. analysis will also be easier – several of the data sets used for the case studies contained 

in excess of 200,000 rows of data, which adversely affects computer performance when 

using commonly-used software such as Excel. 

In several cases it was necessary to aggregate five- and ten-minute frequency data to hourly or daily 

average values – the results obtained using these aggregated data were practically indistinguishable 

to those derived from the raw data, which confirms that for many purposes, much of the high 

frequency data are redundant.   

Development of Standard Operating Procedures (SOPs) 
Review of SOPs derived specifically for nitrate sensors from other agencies, as well as those related 

to continuous measurement of other water quality variables in New Zealand identified key elements 

that were summarised as a draft or skeleton SOP.  We recommend that this is further developed in 

consultation with regional council practitioners in the same manner that National Environmental 

Monitoring Standards have been developed for several continuously measured water quality 

variables.  Key findings include: 

▪ Instruments must be calibrated using appropriate standard solutions and zero 

measurement in spectrally pure water must be performed prior to deployment. 

▪ All optical surfaces must be kept as clean as possible to avoid attenuating the light 

signal, which will cause drift in instrument response.  Use of mechanical wipers is 

essential, supplemented by physical cleaning of the sensor with appropriate chemicals 

when necessary. 

▪ Monthly site visits, during which instrument inspection and cleaning, collection of 

validation samples and where necessary, verifying instrument responses in spectrally 

pure water, air (i.e., without any light attenuation) and using one or more calibration 

samples, might be undertaken, appears adequate.  Where possible, verification of 

instrument performance using a similar instrument would be useful. 

▪ Full calibration of an instrument is a task better suited to a laboratory environment; 

provided the instrument is performing adequately, this task is probably not required 

more than once annually. 
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More work is needed to guide the effective and efficient use of in-situ continuous nitrate-N sensors 

and associated data processing and analysis.  For example, research within NIWA is exploring the 

interplay between suspended sediment, dissolved organic material and accuracy of sensor 

measurements. This is being undertaken at both laboratory and field-scale, and the findings are likely 

to contribute further to the development of standard procedures that could be included in a future 

NEMS addressing topics such as nitrate-N sensor selection, deployment and operation, and data 

processing, interpretation and use. 
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1 Introduction 
Internationally there is a trend toward use of high frequency (continuous), in-situ measurement of 

water properties (e.g., temperature, electrical conductivity, turbidity, dissolved oxygen).  Recently, 

this has included measurement of contaminants such as nitrogen (N), specifically nitrate-N. New 

Zealand is following suit, recognising that monthly discrete (spot) water quality measurements and 

samples obtained from traditional State of the Environment (SoE) monitoring programmes cannot 

capture or characterise rapid changes in water quality that can affect human and aquatic health.  For 

example, a significant proportion of an annual nitrate load may be transported during short-duration 

runoff events that occur outside of routine sampling visits.  This makes it difficult to accurately 

estimate the true annual load of nitrate-N lost from a catchment. 

While continuous monitoring of water temperature, conductivity, dissolved oxygen and turbidity are 

now becoming common-place in New Zealand, continuous monitoring of nitrate-N remains relatively 

new.  High frequency nitrate-N data are increasingly important to regional councils for several 

reasons, including: 

▪ improving estimates of the impacts of land use on water quality through better 

characterisation of temporal variation in concentrations – including identification of 

peak runoff concentration and potential to improve source identification 

▪ reducing uncertainty in the examination of trends in nitrate-N concentrations 

▪ improving the accuracy of estimated nitrate-N loads, which are key to  

− establishing water quality limits under the National Policy Statement for 

Freshwater Management (NPS-FM), and to  

− meeting regional and national freshwater objectives 

▪ calibrating nitrate-N surface water and groundwater transport models 

▪ improving ability to predict downstream water quality (e.g., river intakes used for 

potable and industrial supply), and 

▪ identifying periods when nitrate-N concentrations or loads require additional 

management. 

This report focuses on continuous nitrate-N monitoring in rivers and reviews data from some existing 

in-situ nitrate-N sensor deployments.  Preparation of the report was jointly funded by an Envirolink 

Large Advice Grant (MBIE Contract No. C01X1717) lodged by Environment Southland (ES), Otago 

Regional Council and Environment Canterbury, and NIWA Strategic Science Investment Funding 

(SSIF). 

1.1 Report purpose and scope 

This project draws on both international literature and recent New Zealand field trials to produce 

preliminary guidance regarding in-situ continuous nitrate-N measurement in riverine waters, 

including provision of guidance on associated data processing, analysis and use.  Specifically, this 

report provides: 
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1. An overview of the principles of continuous nitrate-N monitoring, including monitoring 

programme design, and applications/uses for fresh water management. 

2. A comprehensive assessment of existing riverine monitoring applications in New 

Zealand (the Mataura and Aparima rivers in Southland (operated by NIWA and ES 

respectively), and the Kakanui River in Otago, operated by ORC). 

2.1 Lessons learned regarding field deployment and maintenance, including 

different cleaning systems – wiper versus compressed air, sensor placement, 

and  

2.2 Understanding localised temporal variations in nitrate concentration as a 

result of mixing and flow/current variation and biomass attenuation. 

3. Identification of information that should be included in a draft procedure for sensor 

calibration and validation, considering data derived from wet-chemical nitrate-N 

analysis vs. in-situ measured data, local calibration requirements, etc.  

4. Identification of information that should be included in a draft procedure for data 

processing and QA (e.g., adjustment of baseline drift, addressing data spikes, 

production of a synthetic record to fill ‘gaps’ etc.).  

5. Data analysis and interpretation, including data visualisation methods, and 

interpretation of hysteresis (i.e., the relationship between variable concentrations in 

the rising and falling limb at multiple percentiles of discharge, which is informative 

regarding the mobilisation of contaminants during rainfall events), and flushing 

analyses. 

6. Guidance on reporting and use of these data, including brief commentary on the 

implications for reporting continuous vs traditional grab/spot samples (e.g., nutrient 

load calculations, compliance monitoring), and of flow adjustment in trend analysis. 

7. Guidance on identifying where and when continuous monitoring is most appropriate, 

and using this information to temper community expectations that this equipment 

should be a “routine monitoring tool” on each of “their” rivers. 

8. A summary of the outcomes of a workshop involving field and science staff from 

NIWA, and councils who have implemented continuous water quality monitoring, or 

are considering doing so.  

1.2 Report outline 

This report is divided into eight principal sections:   

Section 2 provides an overview of continuous nitrate monitoring, including various techniques 

available to measure nitrate-N continuously, typical performance of in-situ analysers, and situations 

where hyperspectral instruments have been used. 

Section 3 describes hyperspectral measurement in more detail, factors that impair measurement, 

and typical precision and accuracy. 

Section 4 discusses instrument selection, deployment, measurement and associated activities.   
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Section 5 introduces the case studies, data used for these studies and the techniques that were 

applied to these data.   

Section 6 is a case study of data supplied by Otago Regional Council with special emphasis on the 

Kakanui River at McCones site.  Flow concentration relationships, the effect of cleaning, load 

estimation and trend assessment are discussed.   

Section 7 is the Aparima River case study (Environment Southland data).  Load estimation is a key 

focus, as well as how these data may be used to better understand contaminant mobilisation and in-

river processes.  

Section 8 is a case study of data collected by NIWA for the Mataura River, Southland.  Within-river 

and out-of-river deployment of instruments is discussed, an assessment of measurement frequency 

is discussed.   

Section 9 discusses management of the time series data generated by two brands of instrument, and 

time series data management generally.   

The guidance is not complete because it reflects current best available knowledge and experience, 

and guidance may always be improved as technologies are developed, or new techniques arise. 

Aspects of the guidance are expected to contribute to a potential National Environmental Monitoring 

Standard (NEMS) for continuous nitrate-N measurement and further continuous water quality 

monitoring initiatives.  Materials that may contribute to development of standard procedures are 

include in the text, as well as in Appendix G.  Appendix H through Appendix J contain figures and text 

provided by experienced practitioners derived from their experience with deployment and operation 

of this equipment.  We anticipate that this information may be used immediately by anyone 

considering continuous nitrate-N monitoring. 
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2 Overview of high frequency nitrate-N monitoring 
This section provides an overview of continuous nitrate monitoring, including various techniques 

available to measure nitrate-N continuously, typical performance of in-situ analysers, and situations 

where hyperspectral instruments have been used. 

2.1 Recent developments in continuous monitoring 

Considerable development in the technologies required for continuous monitoring has occurred over 

the last 15 years, and continuous monitoring of water quality is being increasingly implemented, and 

many of the citations in this report describe the evolution of this technique. 

In contrast with traditional river water quality monitoring, which is typically based on monthly 

sample collection and subsequent laboratory analysis, continuous water quality monitoring 

generates a high frequency time series of water properties (e.g., temperature, electrical conductivity) 

or contaminant concentrations or loads (e.g., nitrogen, phosphorus). Typically, this might be high 

temporal resolution data at a fixed site, but it also includes continuous spatial monitoring or mapping 

of water quality variables in lakes or estuaries (e.g., by depth-profiling or using portable or movable 

equipment).  Many water quality variables can be monitored continuously by a range of sensors, 

including non-spectrometric sensors (e.g., ion selective electrodes, thermistors, or combinations of 

sensors such as multi-water quality variable sondes), spectrometric sensors (including fluorescence, 

absorptiometry e.g., portable UV/Vis spectrometers, beam transmissometers) and portable wet 

laboratories and microbiological analysers.  Several sensor types related to nitrate-N measurement 

are discussed briefly in Section 2.2.   

High frequency monitoring has the potential to contribute significantly to national and international 

aquatic science. High frequency monitoring of physical water quality is reasonably mature (e.g., 

temperature, dissolved oxygen, pH, and turbidity (Gippel 1989; Gippel 1995; Grayson et al. 1996), 

whereas routine high frequency nutrient monitoring is not much more than one decade old (Jordan 

et al. 2005; Jordan et al. 2007), and real-time E. coli monitoring is arguably still emerging from the 

field-testing phase (Stott et al. 2016).  

The National Environmental Monitoring and Reporting (NEMaR) project commissioned by the 

Ministry for the Environment (MfE) in 20111 identified national freshwater monitoring protocols for 

core river water quality, river bio-monitoring and lake monitoring variables.  Through an expert-panel 

process, the project also identified a selection of key water quality variables that were recommended 

for national State of Environment (SoE) monitoring and reporting.  Most of these variables are 

currently a component of regional and national river water quality monitoring.  Table 2-1 lists the 

recommended core and supporting water quality variables, and identifies those that are currently 

amenable to continuous monitoring.   

 

 

 

 

 
1 http://www.mfe.govt.nz/publications/fresh-water-environmental-reporting/freshwater-monitoring-and-quality-assurance-report  

http://www.mfe.govt.nz/publications/fresh-water-environmental-reporting/freshwater-monitoring-and-quality-assurance-report
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Table 2-1: Key water quality variables, including those amenable to in-situ analysis. Green shaded cells are 
key variables identified in the NEMaR programme, and tan shaded cells are supporting variables identified in 
the NEMaR programme.  Blue shading indicates those variables currently amenable to continuous monitoring.  
EC = electrical conductivity. 

Water quality 
variable 

Technique used for continuous measurement 

Laboratory 
method 

Notes Non-
spectro. 
sensor 

Fluorescence Absorptiometry Surrogate 

Temperature  A     A Thermistor  

Dissolved oxygen 
(DO)  

B     
B Optical/ 
Electrochemical)  

Visual clarity    C D  
C Beam atten.  
D Turbidity  

Oxidised nitrogen 
(NOx)  

E     
E lon selective 
electrode  

Ammoniacal 
nitrogen  

      

Total nitrogen 
(TN)  

   F  F Turbidity  

Dissolved reactive 
P (DRP)  

      

Total phosphorus 
(TP)  

   G  G Turbidity  

E. coli bacteria   H H I  

H Enzymatic 
procedure 
I Turbidity  

Conductivity/ 
salinity  

J     
I EC principle; 
Water tracer  

Turbidity      Beam atten.  

Total suspended 
solids  

   K  K Turbidity  

Coloured 
dissolved organic 
matter (CDOM)  

 L    
L fDOM;  
Water tracer  

Rhodamine WT       Water tracer  

Bromide  M     

M Ion selective 
electrode;  
Water tracer  

Dissolved organic 
carbon (DOC)  

      

Total organic 
carbon (TOC)  

      

Biochemical 
oxygen demand 
(BOD)  

      

Chlorophyll-a        

Blue-green 
pigments  
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Several other variables which have a well-established role in water quality assessment are also listed.  

This list of variables amenable to in-situ measurement continues to grow in response to advances in 

measurement technology.  For example, near real-time measurement of E. coli in freshwater has 

been demonstrated in New Zealand recently (e.g., Stott et al. 2016; Stott R. et al. 2017), and 

continuing work has more clearly identified performance criteria for this method.2   

2.2 Developments in continuous nitrate-N monitoring 

Moorcroft et al. (2001) reviewed nitrate-N measurement in a range of matrices using several broad 

categories of measurement principles.  These included gas chromatographic, chemical, 

electrochemical, and spectrophotometric procedures.  Some of these are not suitable for in-situ 

environmental monitoring; several of the more appropriate techniques are discussed briefly below. 

2.2.1 Ion-Selective Electrodes  

Ion-Selective Electrodes (ISE) comprise an ion-specific (i.e., nitrate anion, NO3
-) half-cell, and a 

reference half-cell.  The voltage difference between the two electrodes is proportional to the nitrate 

ion concentration. The two half-cells are integrated into one device, analogous to the well-known pH 

electrode.3   

The device is relatively inexpensive, easy to use, has a wide measurement range and is insensitive to 

interferences from colour or particulate materials.  However, this measurement approach has 

several limitations, including low resolution, accuracy and precision (repeatability), sensor drift 

(especially at low concentrations), and interference from other ionic (charged) water constituents 

(e.g., chloride).  Continuous measurement using this technology is therefore likely to require high 

maintenance effort. 

2.2.2 In-situ wet chemical nitrate sensors 

An example of this technology is the YSI 960 Nitrate Monitor, which has been available since 

approximately 2005.  The system is based on the principle of flow injection analysis (FIA), which is 

widely used for laboratory nitrate-N and nitrite-N (NNN or NOx) measurement.  A series of precise, 

low-volume pumps mix an aliquot of water with user-prepared reagents that undergo reaction with 

the nitrate ion to produce a coloured solution.  The intensity of the colour is proportional to the 

concentration of nitrate in the sample.   

The device measures NNN, i.e., cannot differentiate between forms of soluble oxidised nitrogen.  The 

sample aspiration and colour-formation is time dependent, restricting the frequency of 

measurement to approximately 15 minutes.  The instrument requires reagents and generates waste, 

which necessities periodic maintenance.  The manufacturer claims that analyses will be possible for 

one-month at a one-hour measurement frequency.  The use of blanks and standard solutions enables 

automatic on-site drift compensation.   

 

 
2 Dr Rebecca Stott, unpublished results from 2017/18 NIWA internal SSIF projects FWWQ1818 and FWWQ1823. 
3 
http://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.hach.com%
2Fasset-
get.download.jsa%3Fid%3D7639984588&ei=l2MsVK7ICoeAiwK4pYDwCg&usg=AFQjCNFq683z0Ibxsfraa3qYq5hxruho0Q&bvm=bv.76477589
,d.cGE  

http://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.hach.com%2Fasset-get.download.jsa%3Fid%3D7639984588&ei=l2MsVK7ICoeAiwK4pYDwCg&usg=AFQjCNFq683z0Ibxsfraa3qYq5hxruho0Q&bvm=bv.76477589,d.cGE
http://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.hach.com%2Fasset-get.download.jsa%3Fid%3D7639984588&ei=l2MsVK7ICoeAiwK4pYDwCg&usg=AFQjCNFq683z0Ibxsfraa3qYq5hxruho0Q&bvm=bv.76477589,d.cGE
http://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.hach.com%2Fasset-get.download.jsa%3Fid%3D7639984588&ei=l2MsVK7ICoeAiwK4pYDwCg&usg=AFQjCNFq683z0Ibxsfraa3qYq5hxruho0Q&bvm=bv.76477589,d.cGE
http://www.google.co.nz/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.hach.com%2Fasset-get.download.jsa%3Fid%3D7639984588&ei=l2MsVK7ICoeAiwK4pYDwCg&usg=AFQjCNFq683z0Ibxsfraa3qYq5hxruho0Q&bvm=bv.76477589,d.cGE
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The “typical” nitrate-N concentration measurement range is 0-5 mg/L, but may be extended to 

approximately 10 mg/L with pump and dilution modifications.  The linear measurement range 

extends to approximately 6 mg/L, less than the measured in some eutrophic streams in New Zealand 

(e.g., lower Hinds River, Canterbury).  Accuracy is typically ±5% (dependent on the light path in the 

measurement cell), ranging from 0.2 to 0.02 mg/L.  An independent trial of the device in saline 

waters concluded “In general, however, it appears that the fundamental technology has the 

capability to successfully measure in situ nitrate concentrations under a variety of field conditions.”4   

Although not noted as limitations by the trial, the method does require the use of hazardous 

materials, and generates wastes that must be disposed of appropriately.  The effects of particulate 

materials were not noted, because the waters tested were relatively clean.  

A more recent approach to in-situ measurement of nitrate-N is provided through use of microfluidics, 

alternatively known as “lab-on-a-chip” (Ogilvie et al. 2011; Beaton et al. 2012; Clinton-Bailey et al. 

2017).  The technique allows the manipulation of small volumes of fluids (tens of µL) through 

microchannels, typically tens to hundreds of micrometres wide.  In a recent application by Beaton et 

al. (2017), fluid handling was performed with a custom-built device comprising a three-channel 

syringe pump and 14 solenoid valves attached directly to the chip, using a system controlled with a 

custom microcontroller-based electronics package.  A conventional wet-chemical analytical process 

was used, based on the Griess assay.  Following cadmium reduction (to convert nitrate to nitrite), 

diazotization with sulphanilamide and subsequent coupling with N-(1-naphthyl)-ethylenediamine 

dihydrochloride (NED), an intensely coloured azo dye is formed.  The latter is commonly used for 

colorimetric nitrite analysis because it is not subject to interferences in oxygenated seawater (Beaton 

et al. 2012).  The technique is sensitive, accurate and precise (demonstrating similar performance to 

laboratory scale instruments).  The analytical limit of detection was estimated to be 1.6 µg/L, over a 

measurement range that extended to 21.7 mg/L as nitrate-N.  Other attractive features of the 

devices are small size, low power consumption, and extended periods of unattended operation (up 

to 26 days demonstrated by Beaton et al. (2012), who considered that 12 weeks of operation was 

feasible if a conventional filter was used to reduce particulates).  Measurement frequency was 300 s 

(five minutes) – although Ogilvie et al. (2011) demonstrated that frequencies of 24 s were possible 

(~140/hour).  Currently these devices are research equipment, but recent developments using 3-D 

printing techniques and mobile phone applications create the potential for cheaper and more 

widespread adoption and use (e.g., Jayawardane et al. 2014; Kudr et al. 2017; Li et al. 2017; 

Martinez-Cisneros et al. 2018).  

2.2.3 Ultraviolet (UV) spectrophotometric determination of nitrate  

Analysis of nitrate-N using UV spectroscopy is discussed in greater detail in Section 3.2.  In-situ 

analysers (discussed in the next section) rely on UV spectroscopy, and have achieved relatively 

widespread use because of the miniaturisation of the equipment, coupled with the development of 

sophisticated data mining techniques and algorithms that have allowed several of the shortcomings 

in the basic analytical approach to be overcome.  

2.2.4 High frequency, hyperspectral instruments  

Several manufacturers supply high frequency hyperspectral in-situ analysers that may be used for 

continuous nitrate measurement. These include: 

 
4 https://drum.lib.umd.edu/bitstream/handle/1903/13731/[UMCES]CBL%2008-
043.pdf;jsessionid=D672FF26E615EA2212DC526B886583EE?sequence=3  

https://drum.lib.umd.edu/bitstream/handle/1903/13731/%5bUMCES%5dCBL%2008-043.pdf;jsessionid=D672FF26E615EA2212DC526B886583EE?sequence=3
https://drum.lib.umd.edu/bitstream/handle/1903/13731/%5bUMCES%5dCBL%2008-043.pdf;jsessionid=D672FF26E615EA2212DC526B886583EE?sequence=3
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▪ Spectra::lyser, manufactured by s::scan in Austria (https://www.s-can.at/), who have a 

range of instruments designed for stationary and field deployment.  Several pathlength 

and wavelength ranges are provided. 

▪ TriOS (http://www.TriOS.de/en/products/sensors.html) who have a range of 

instruments designed for stationary and field deployment.  Several wavelength ranges 

are provided, and a larger range of pathlength options exist than for the Spectra::lyser.   

− The TriOS OPUS device measures over the wavelength range 190 – 360 nm with 

0.9 nm resolution.  It allows measurement of several different water quality 

variables. 

− The TriOS NICO is similar but is optimised for nitrate measurement with turbidity 

compensation. 

▪ Nitratax sc Nitrate Sensors (https://www.hach.com/nitrate-sensors/nitratax-sc-

nitrate-sensors/family?productCategoryId=35546907021).   This equipment is 

designed principally for wastewater treatment plant applications, but has been 

successfully deployed in the field. 

▪ SUNA V2 UV nitrate sensor (http://www.seabird.com/nutrient), designed for high 

turbidity freshwater systems, as well as marine environments, and is able to measure 

to depths of 500 m. 

▪ Digital ISE sensor for nitrate (https://www.wtw.com/en/products/product-

categories/sensor-technology/digital-iq-sensors-online/iq-ise-sensors-for-

nitrate.html?mobile=1). A range of products exist, optimised for freshwater or 

wastewater applications.  Higher resolution instruments are recommended for 

resolving the nitrate and nitrite peaks and for optimal accuracy.  

2.3 Uses of high-frequency water quality data for water quality assessments 

Advances in the capability of in-situ sensors allow us to monitor water quality in rivers and estuaries 

at time scales at which changes occur; data communications allow us to report and evaluate this 

information in near real-time.  

High frequency data can assist in identifying water quality drivers. For example, seasonal, diel, event 

and within-event, finer time scale patterns may be interpreted in terms of contaminant mobilisation, 

delivery and availability.  Use of several instruments within a catchment creates the potential to 

better understand within-stream nutrient processing and attenuation.  It also has the potential to 

allow identification of “contaminant hotspots”, reaches where elevated inputs of nutrient may occur.    

Collecting these data requires rethinking monitoring programme design, having regard for:  

▪ the selection of sensors that are most fit for purpose (which sensor(s) should I use?) 

▪ the timing of data collection, and the duration of measurement (when should data 

collection commence, and for how long do I need to collect data?) 

▪ the spatial distribution and number of sensors required (where should the sensor(s) be 

deployed, and how many do I require?) 

https://www.s-can.at/
http://www.trios.de/en/products/sensors.html
https://www.hach.com/nitrate-sensors/nitratax-sc-nitrate-sensors/family?productCategoryId=35546907021
https://www.hach.com/nitrate-sensors/nitratax-sc-nitrate-sensors/family?productCategoryId=35546907021
http://www.seabird.com/nutrient
https://www.wtw.com/en/products/product-categories/sensor-technology/digital-iq-sensors-online/iq-ise-sensors-for-nitrate.html?mobile=1
https://www.wtw.com/en/products/product-categories/sensor-technology/digital-iq-sensors-online/iq-ise-sensors-for-nitrate.html?mobile=1
https://www.wtw.com/en/products/product-categories/sensor-technology/digital-iq-sensors-online/iq-ise-sensors-for-nitrate.html?mobile=1
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Although the additional data provided by continuous instruments may prove useful in itself, it is 

better to consider the information requirements before purchase and deployment of the 

instruments, to ensure that all the prerequisites for providing high quality data will be satisfied.    

2.3.1 Better characterisation of catchment water quality  

In many catchments in New Zealand, collection of water quality data has principally been directed by 

SoE monitoring, which often has a primary objective of detecting and quantifying temporal trends, 

typically over a five- to ten-year period.  These data are generally collected through a pseudo-

random monitoring programme design, having little regard for flow at the time of sampling.  The 

timing of sample collection aims to have more or less equal time spacing between samples, rather 

than targeting a range of flow conditions.  Data tends therefore to better represent base-flow 

conditions, because high-flow conditions tend to be transient, and less likely to be sampled.  For 

many variables, however, the bulk of the load may be delivered during high flow events, following 

rainfall.  

In other circumstances, there may be a strong seasonal component to the delivery and generation of 

contaminant loads.  For example, seasonal rainfall causes a pulse of groundwater that increases the 

concentration (and load) of nitrogen to be discharged from shallow groundwater to many river 

systems (e.g., Figure 2-1). 

  

Figure 2-1: Example of seasonal variation in nitrate-N concentration, Waikato River at Hamilton.  These 

data were derived from the National River Water Quality Network operated by NIWA.  

Estimation of the “true” annual nitrate-N load delivered from the Waikato River catchment should 

therefore have regard for this seasonal distribution in the load.  Although a pseudo-randomised 

monitoring programme will provide an estimate of the seasonal load, it may not be as effective as 

use of data that targets periods of elevated nitrate-N concentration and elevated flow as part of an 

annual monitoring programme.  In some cases, rigid monthly sampling creates the potential to miss 

collecting water samples during key periods of interest, or fail to characterise the water quality 

dynamics of the catchment of interest (i.e., use of monthly SoE data in load calculation is best 

supplemented with additional event-based data).  Some of the consequences of rigid monitoring 

programme design and operation are indicated in Figure 2-2: 

▪ Figures A and B involve fixed time interval sampling and fixed collection times for six 

discrete samples – the average or median concentration of the water quality variable 

derived from these two data sets will be different, but only because of the timing of 

sample collection, and neither monitoring programme indicates that a regular 

concentration cycle exist. 

Waikato River at Hamilton Traffic bridge, NRWQN site HM3
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▪ Figure C indicates a less rigid sample collection frequency, and collection of 1/3 more 

samples (8) – the increased number of samples, and variable timing better 

characterises the range of concentrations.  The number of samples is still inadequate 

to demonstrate the recurring cycle, or frequency of the cycle. 

▪ Figure D identifies and “perfectly” represents the range and duration of concentrations 

over the regular cycle that exists.  The monitoring effort is considerable, relative to the 

other monitoring programme designs – 101 samples vs 6, 6 and 8 for Figures A, B and 

C, respectively. 
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Figure 2-2: Schematic demonstrating the influence of frequency of discrete sample collection on 
characterisation of water quality constituent dynamics in a system.  The phenomenon of “aliasing” is 
demonstrated by low frequency grab sampling (A–C).  High frequency in-situ measurements (D) provide a more 
accurate depiction of the system.  Based on Figure 3 of Kraus et al. (2017). 

The challenge of identifying and characterising periods of poor water quality for variables subject to 

recurring diurnal or seasonal cycles is well-established (e.g., for dissolved oxygen concentration).  

This has relied on the use of bulk manual sampling or automatic samplers and – more recently – the 

development of accurate, high frequency measurement equipment that may be deployed and left to 

operate over extended time periods.   

Techniques for targeting periods of high flow or periods of elevated nitrate-N concentrations exist.  

These include: 

▪ More frequent manual grab sampling during the periods of interest. 

▪ Use of automatic samplers to undertake flow-related sampling, with the sampler 

triggered according to stage height or discharge, or rate of change in either of these 

metrics. 
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The first of these methods is expensive, requiring more frequent site visits, and is dependent on 

human intervention.  It may not be possible to sample the flood of interest because of health and 

safety concerns, or the critical sampling period may occur at night, or the person tasked with 

responding to the event of interest may not be available at the time required.  The second option is 

less expensive, but will incur additional outlay and setup costs.  Both approaches require analysis of 

additional samples in the laboratory.  The use of in-situ measurement devices creates the prospect of 

far more frequent monitoring sampling frequency of minutes), while not necessarily requiring 

analysis of large numbers of additional grab samples.  

2.3.2 Load estimation 

Load estimation involves calculation of the instantaneous load or flux of material transported in river 

water.  It is a fundamental metric that underpins water quality limit setting requirements in the 

National Objectives Framework of the National Policy Statement for Freshwater Management 2014 

(New Zealand Government 2014; New Zealand Government 2015; New Zealand Government 2017).  

While freshwater values are related to numeric attribute concentrations values, management of 

land-based activities requires load calculation.   

Catchment yield, or the mass of contaminant delivered from the catchment is the product of 

concentration and flow.  The accuracy of load estimation is often limited by the quantity and 

representativeness of water quality data.  For example, the annual load calculated from scenarios A-

C in Figure 2-2 will differ from each other, and will be very different to the load calculated using the 

data indicated in scenario D.  It may not be feasible or affordable to manually collect the number of 

samples indicated in scenario D, but it may be possible to use a suitable sensor to collect data over 

several key periods at high frequency, thereby improving the annual load estimate.  

The loads estimated from regression and other statistical procedures may also be used to direct 

catchment modelling, by assisting with model setup and identifying the sub-catchments and land 

uses where implementation of various mitigation strategies is likely to be most effective.  

Understanding the timing at which various proportions of the overall load are delivered to the river 

reach, lake or estuary of interest, is also valuable.  It allows the efficacy of the mitigation strategy to 

be “tuned” so that the maximum water quality or ecological benefit may be achieved at lowest cost.   

2.3.3 Spatial surveys 

Instruments deployed from boats have been used to determine spatial trends and identify 

contaminant or nutrient gradients in large rivers, lakes, wetlands and estuaries.  Crawford et al. 

(2015) revealed previously unknown variability in several factors in streams, rivers, and lakes. They 

also detected land-water connections in a small lake, inferred the role of main-channel vs backwater 

nutrient processing in a large river, and detected sharp chemical changes across aquatic ecosystem 

boundaries in a stream/lake complex.  Fichot et al. (2011) used hyperspectral data to determine 

spatial patterns in dissolved organic carbon (DOC), and to determine the probable source of DOC in 

marine waters.   

Uses of these data include identification of contaminant hotspots or sources, areas or zones where 

nutrients may be consumed or transformed at higher rates.  Dense spatial data also allows the 

representativeness of fixed water quality monitoring sites to be assessed.  High frequency data may 

reveal subtle features or characteristics in water that may not be feasible to obtain in other ways.  

Using other techniques, the cost of obtaining these data or information at high spatial scale may be 

prohibitive.  For example Viswanathan et al. (2016) utilised isotopic analysis of oxygen and nitrogen 
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in nitrate-N and oxygen in water, coupled with collection and analysis of multiple grab water samples 

to provide a level of spatial information that could conceivably be obtained at much lower cost and 

with less effort using portable equipment.  Surveys of this nature have been undertaken to identify 

the location of nitrate-N inputs to surface water (from points sources (tributaries, drains and tile 

drains), and upwelling groundwater etc.,) estimate nitrate-N removal rates along river reaches, and 

determine other in-stream processes (Williams 2013; Hensley et al. 2014; Aubert et al. 2016; Hensley 

and Cohen 2016; Rode et al. 2016; Kunz et al. 2017). 

2.3.4 Other uses of high frequency data 

Several other uses (some related to the points described in detail above) may also be identified for 

high frequency nitrate assessment, including: 

▪ Identifying contaminant spills, and transient or irregular water quality events. 

▪ Quantifying the water quality benefits arising from Good Management Practices 

(GMPs) – not just changes in median or average concentrations, but decrease in 

concentration or load maxima, decreased variability, and reduced frequency of poor 

water quality events (Viaud et al. 2004). 

▪ Identifying the timing, magnitude and duration of nutrient transport and linking these 

to hydrological conditions (Bende-Michl et al. 2013; Schwientek et al. 2013), and 

identifying periods when better management of concentration or loads of 

contaminants is required (Stamm et al. 2013). 

▪ Using hysteresis analysis to infer source-transport relationships (e.g., McKergow and 

Davies-Colley 2010; Hughes et al. 2012; Lloyd et al. 2013; Bieroza and Heathwaite 

2015). 

▪ Improving estimation of the impacts of land use on water quality by better 

identification and differentiation of point and diffuse pollution sources using high 

frequency coloured dissolved organic matter (CDOM) fluorescence (Old et al. 2012) or 

nitrate-N. 

▪ Undertaking spatial surveys to identify source and sink areas or river plume dispersion 

(Hudson et al. 2009), including use of continuous sensors to trace water masses 

labelled with tracers in a wide range of science and applied applications (e.g., 

Drummond et al. 2014). 

▪ Continuous monitoring of pathogens, e.g., using turbidity as a surrogate for E. coli 

(Davies-Colley et al. 2008; McKergow and Davies-Colley 2010) and other microbial 

contaminants (e.g., Stott et al. 2011; Stott et al. 2016; Stott R. et al. 2017). 

▪ Improving understanding of hyporheic exchange of water and particles in streams and 

rivers, which is important to the dynamics of fine particles, nutrients and microbes 

(e.g., Drummond et al. 2014), and better identifying hydrological pathways (e.g., 

Schwab et al. 2014). 

▪ Developing new or refined load estimation techniques (e.g., López-Kleine and Torres 

2014), new surrogates and analysis algorithms (e.g., Etheridge et al. 2014b), and 



 

Review of high frequency water quality data  21 

 

general improving of data processing techniques e.g., algorithms for specific 

calculations. 

▪ Providing high quality data over a range of flows (e.g., Jordan et al. 2005; Jordan et al. 

2007). 

▪ Guiding the frequency and timing of discrete sample collection – once a more 

representative record of water quality variable concentrations is available, these data 

may be subsampled to identify a sampling regime that will allow the concentration or 

load of the variable to be adequately characterised (Bowes et al. 2009; Cassidy and 

Jordan 2011; Wade et al. 2012). 

▪ Exploring catchment scale-sample frequency relationships. On larger rivers that are 

less dynamic, sampling at frequencies of days to weeks may be sufficient (Burt et al. 

2011), whereas it may be necessary to collect data at much higher frequency to 

represent smaller, more dynamic, catchments (Johnes 2007). 

▪ Guiding sensor selection (e.g., Bende-Michl and Hairsine 2010), including use of lower 

cost, possibly less sophisticated or accurate sensors, for more wide scale deployment 

(e.g., UV nitrate sensors rather than full UV-NIR spectral sensors; passive samplers 

(Jordan et al. 2013) or microfluidic samplers (Cogan et al. 2013)). 

▪ Checking, augmenting and extending routine (discrete) SoE monitoring for short or 

critical time periods (e.g., to check model predictions in relation to NOF guidelines 

(Davies-Colley et al. 2013). 

In general, information derived from monitoring increases as sampling frequency increases (Halliday 

et al. 2015) – the challenge is to find a balance between the high (in cases, excessive) cost of high 

frequency monitoring and the extent of information required.  This is addressed through monitoring 

programme design. 
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3 Measurement of nitrate-N using UV-visible spectroscopy 
This section provides a brief overview of the principle of nitrate-N measurement and then explains 

measurements by UV spectroscopy. Measurement interferences, algorithms applied in different 

water matrices and sensor path length are all discussed, along with instrument precision and 

accuracy. 

3.1 The measurement principle 

The Beer-Lambert law (or Beer's law) is the relationship between absorbance and concentration of 

an absorbing species. The general Beer-Lambert law is usually written as: 

A = ε(λ) ×  L ×  c 

where A is the measured absorbance, ε(λ) is a wavelength-dependent absorptivity coefficient, L is 

the path length, and c is the analyte concentration. 

Consider a solution receiving a beam of light: 

 

Where 𝐼𝑜 is the initial light intensity and 𝐼 is the light intensity after it passes through the sample. 

Measurements are usually made in terms of transmittance (T), which is defined as:  

T =  
𝐼

𝐼𝑜
 

The relationship between A and T is:  

A =  − log T = − log 
𝐼

𝐼𝑜
 

The concentration of an absorbing substance may be obtained by rearranging the previous 

equations: 

𝑐 =  
𝐴𝜆

𝜀𝜆 × 𝐿
 

Where 𝑐  is the concentration of absorbing material, 𝐴𝜆  is the absorbance at a specific wavelength 

(λ), 𝜀𝜆 is a constant (the molar absorptivity of the absorbing substance at a specific wavelength λ), 

and 𝐿 is the path length. 



 

Review of high frequency water quality data  23 

 

Absorption instruments can usually display the data as either transmittance, %-transmittance, or 

absorbance. An unknown concentration of an analyte can be determined by measuring the amount 

of light that a sample absorbs and applying Beer's law. If the absorptivity coefficient is not known, 

the unknown concentration can be determined using a working curve that defines the relationship 

between absorbance and concentration, derived from a series of standards of known concentration.  

▪ If no substances in the solution absorb light of the wavelength of interest, 𝐼𝑜 and 𝐼 will 

be equal, absorbance will be 0 absorbance units and transmittance will be 100%. 

▪ If high concentrations of substances absorbing light occur in solution (interferents), 

absorbance will be significant, and transmittance will be less than 100%.   

▪ If a substantial amount of particulate or suspended material is in solution, considerable 

light scattering and attenuation of the incident light intensity may occur.  Absorbance 

may still be low, but transmittance may be reduced substantially. 

The latter two points present challenges to the use of absorbance measurement of any material – 

there is no guarantee that the absorbance is entirely due to the material of interest, and any 

suspensoid will reduce or attenuate the light intensity.  Both of these factors must be accounted for 

when measuring the concentration of a substance, including nitrate-N.   

3.2 UV spectroscopic analysis of nitrate-N 

Nitrate absorbs in the UV region of the electromagnetic spectrum, with peak absorbance at 220 nm. 

Nitrite-N absorbs strongly as well, but at a slightly longer wavelength.  For both forms of oxidised N, 

the absorption is proportional to the concentration of NOx
- ions in the water.  In natural waters (and 

particularly in seawater), the peak absorbance occurs as a shoulder on a strong background 

absorbance signal.  Measurement of nitrate-N using UV therefore requires discrimination of a small 

shoulder peak on a large background signal.  There is also a temperature dependence (with 

absorbance increasing with temperature).  As indicated in Section 3.1, interference is possible from 

dissolved organic materials that absorbs light at the same wavelength, and the presence of 

particulate materials in the sample, which will attenuate the incident light and decrease instrument 

sensitivity.   

UV spectroscopy has been used for nitrate-N determination in water samples for considerable time 

(e.g., Bastian et al. 1957; Armstrong 1963), and is described in Standard Methods as “suitable for 

screening uncontaminated water (low in organic matter)” (e.g. method 4500-NO3-B, APHA-AWWA-

WEF 2018)5.  The occurrence of many potential interferences has promoted use of other 

measurement techniques, but UV spectroscopy continues to be used for laboratory assessment.  

Utilisation of the second derivative of the UV spectrum has proved useful (Pons et al. 2017), 

particularly for samples where the concentration of nitrate-N are greater than approximately 10× 

that of organic nitrogen (Crumpton et al. 1992).   

The relationship between UV absorbance and second derivative and nitrate-N concentration is 

shown in Figure 3-1 and Figure 3-2 for various sample matrices. 

 
5 Commonly abbreviated to APHA 4500-NO3-B in New Zealand. 
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Figure 3-1: Relationship between absorbance (left) and second derivative (right) and wavelength for 
various nitrate-N concentration. Reproduced from Figure 1 in Crumpton et al. (1992).  The curves represent 
standards containing 1, 2, 3, 6 and 9 mg/L as nitrate-N. 

 

 

Figure 3-2: Relationship between absorbance (A), first derivative (A’) and second derivative (A’’), and 
wavelength for a 2.0 mg/L nitrate-N standard solution.  Reproduced from Figure 2 in Pons et al. (2017). 

 



 

Review of high frequency water quality data  25 

 

Figure 3-3 shows the relationship between UV absorbance and wavelength for a series of nitrate-N 

standards, using method APHA 4500-B.  A linear relationship is evident for absorbance at 220 nm and 

nitrate-N concentration (inset).   

 
Wavelength 

Figure 3-3: Relationship between absorbance and wavelength for a series of nitrate-N standards obtained 
using method 4500-B of Standard Methods (APHA-AWWA-WEF 2018).  Reproduced from Figure 3A in Pellerin 
et al. (2013). 

 

Figure 3-4 shows the relationship between nitrate-N concentrations reported by a commercial 

nitrate sensor (Hach Nitratax Plus) and values obtained from laboratory analysis of a series of nitrate-

N standards.  A strongly linear relationship is evident over a concentration range from 0 to 12 mg/L.  

The Hach instrument uses dual beam technology and a 5 mm light pathlength.  The measuring range 

is 0.1-25 mg/L as N (the total of nitrate-N plus nitrite-N).  Bennett et al. (2014) describe how these 

instruments are used as part of the suite of continuous water quality sensors in Kansas, USA. 
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Figure 3-4: Relationship between nitrate-N concentrations measured using a Hach Nitratax Plus sensor and 
laboratory measured nitrate-N standards.  Reproduced from Figure 16 in Bennett et al. (2014). 

Proprietary algorithms supplied by instrument manufacturers are used to compensate for two 

principal interferences on measured nitrate-N concentrations – particulate materials (which 

attenuate light by absorbance and reflection), and light absorbance by other dissolved substances.   

These interferences are discussed next. 

3.2.1 Interference by particulate materials 

Figure 3-5 illustrates the effect that particulate materials (suspensoids) have on measurement 

performance (Pellerin et al. 2013).  This figure shows results for two instruments with different 

pathlengths (2 mm (Hach Nitratax) and 10 mm (Satlantic SUNA), used to measure a solution 

containing 1.0 mg/L nitrate-N and increasing amounts of suspended silt, which increases the 

turbidity.  The Nitratax measures two wavelengths (220 and 350 nm) and incorporates a reference 

beam, whereas the SUNA measures over a wavelength range from 190-370 nm, and does not have a 

reference beam.  Both instruments incorporate an algorithm that compensates for interferences. 

▪ Both instruments demonstrate increased reported concentration of nitrate-N as the 

turbidity increases.   

▪ The dual-wavelength instrument appears less able to compensate for the increased 

light scattering at lower turbidity:  

− A turbidity of 100 NTU appears to have increased the reported nitrate-N 

concentration by 10%, rising to 20% when turbidity exceeds 300 NTU. 



 

Review of high frequency water quality data  27 

 

− Once the thresholds of approximately 100 NTU and 300 NTU are exceeded, the 

reported nitrate concentration appears reproducible. 

− The shorter pathlength (Hach Nitratax instrument) reduces the light attenuation 

caused by particulates, allowing the instrument to provide estimates of nitrate-N 

in highly turbid water (up to 850 NTU). 

▪ The range of measured wavelengths and the algorithm used by the SUNA instrument 

provided similar and reasonably accurate nitrate-N estimates over a wider turbidity 

range (0-2000 NTU) – i.e., is better able to compensate for light attenuation by 

particulate materials 

− The SUNA instrument appears to inadequately compensate for turbidity when 

<200 NTU. 

− The instrument is less able to compensate for increasing turbidity once a 

threshold of 350 NTU is exceeded – 10% increase in reported nitrate-N at 350 

NTU, and approximately 12% increase at 450 NTU. 

− The longer light path allows for greater light attenuation, reducing light 

transmission to below the measurement threshold at approximately 500 NTU.  

 

Figure 3-5: Effect of particulate material on nitrate-N concentration for 1.0 mg/L solution containing 
suspended silt.  Reproduced from Figure 12 in Pellerin et al. (2013).  Data obtained from dual wavelength Hach 
Nitratax, 2 mm pathlength (red dots) and full UV spectrum Satlantic SUNA 10 mm pathlength (yellow squares).  
Transmittance was less than reporting limit for the 10 mm pathlength instrument at approximately 450 NTU. 

Similar results have been obtained in a series of laboratory trials conducted recently in the NIWA 

Hamilton Water Quality Laboratory.6  These results are currently being reviewed in conjunction with 

the local instrument representative and will be documented in an internal NIWA report during 2019. 

 
6 Greg Olsen, Stephan Heubeck, James Sukias, Mike Crump and Neale Hudson.  Unpublished results obtained from NIWA SSIF projects 
FWWQ1823 and FWWQ1909.  These trials involved use of four Spectra::lyser devices, manufactured by s::scan. 
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3.2.2 Interference by Dissolved Organic Carbon 

The same Hach and Satlantic instruments were used to assess the effect of dissolved organic carbon 

(DOC) on measured nitrate-N concentrations.  These data are summarised in Figure 3-6: 

▪ The full spectrum (and associated algorithm) provided by the SUNA instrument 

provides reasonably consistent estimates of nitrate-N over a wide DOC concentration 

range (increasing from 0.9 to 1.0 mg/L nitrate-N as DOC increased from 0 to 25 mg/L). 

▪ The two wavelength Nitratax instrument failed to compensate for increasing DOC once 

a threshold of approximately 2.0 mg/L DOC was exceeded, showing an almost ten-fold 

increase in sensitivity to DOC than the SUNA instrument. 

▪ The algorithm used by either instrument appeared to over-compensate for DOC at low 

nitrate-N and DOC concentrations. 

▪ The linear relationship between measured nitrate-N and DOC by the Nitratax 

instrument potentially allows for post-measurement compensation, but would require 

water samples to be analysed for DOC. 

 

Figure 3-6: Effect of DOC on nitrate-N concentration for 1.0 mg/L solution containing increasing amount of 
humic substance.   Reproduced from Figure 9 in Pellerin et al. (2013).  Data obtained from dual wavelength 
Hach Nitratax, 2 mm pathlength (red dots) and full UV spectrum Satlantic SUNA 10 mm pathlength (yellow 
squares).   

Similar results have been obtained in a series of laboratory trials conducted recently in the NIWA 

Hamilton Water Quality Laboratory.7  These results are currently being reviewed in conjunction with 

the local instrument representative and will be documented in an internal NIWA report during 2019. 

 

 
7 Greg Olsen, Stephan Heubeck, James Sukias, Mike Crump and Neale Hudson.  Unpublished results obtained from NIWA SSIF projects 
FWWQ1823 and FWWQ1909. 
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3.2.3 Selection of compensation algorithm 

Some instrument manufacturers supply several user-selectable algorithms to improve calibration and 

quantification of nitrate-N in various sample matrices.  Figure 3-7 demonstrates the effect that 

selection of an inappropriate algorithm may have on measurement accuracy.  The algorithms 

represent three very different sample matrices: 

▪ The drinking water calibration is intended for clean waters having low turbidity, and 

low DOC concentrations – it is not intended to compensate for significant DOC 

concentrations.  The algorithm does not compensate for DOC, reflected as a linear 

increase in apparent nitrate-N concentration as the DOC concentration is increased. 

▪ The wastewater (“influent”) calibration is intended to compensate for both turbidity 

and elevated DOC concentrations.  The algorithm over-compensates for DOC once a 

threshold of approximately 2.0 mg/L DOC is exceeded.  

▪ The river water calibration is intended to compensate for turbidity and moderate DOC 

concentrations, which it does tolerably well (R2 0.74). 

 

Figure 3-7: Effect of selected compensation algorithm on reported nitrate-N concentration for 1.0 mg/L 
solution containing increasing amount of DOC.  Reproduced from Figure 10 in Pellerin et al. (2013).  Data 
obtained from dual wavelength s::can Spectra::lyser with 5 mm pathlength after application of three calibration 
algorithms.  Note that the equations associated with the relationships above appear to be incorrect – this is 
being queried with the report authors. 
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In recent field and laboratory trials conducted by NIWA, several difficulties were encountered with 

interferences such as particulates and high total nitrogen concentrations in one particular stream 

water (Matahuru Stream inflow to Lake Waikare, Waikato Region).  Very poor correlation between 

s:scan Spectra::lyser estimates of nitrate-N and grab sample nitrate-N were observed.  These results 

are currently being reviewed in conjunction with the local instrument representative.  It is unclear 

currently what the source of the problem was, but it appears to be related to several factors, 

including: instrument calibration, zero adjustment, and selection of light pathlength, and dissolved 

and particulate interferences in a very unusual (humic-rich) sample matrix.  The outcomes of this 

work will be documented in an internal NIWA report in 2019. 

3.2.4 Sensor path length 

Figure 3-5 demonstrated the effect that pathlength may have on measurement of nitrate in various 

natural waters.  Quantification of nitrate-N requires sufficient light to be transmitted through the 

water sample to the sensor.  Excess suspensoids reduce light transmission and can limit the 

measurement of nitrate-N in samples with elevated turbidity.  Because nitrate itself absorbs light 

strongly in the UV spectrum some indication of the likely range of nitrate-N concentrations should be 

determined before purchasing and deploying a sensor.  This would allow selection of an appropriate 

sensor and path length.  Figure 3-8 provides a series of curves indicating the relationship between 

transmittance and nitrate-N concentration for five pathlengths.  These values are derived from Beer’s 

law, and should be considered indicative – they do not account for other matrix effects, such as 

suspensoids concentrations.  The figure indicates the trade-off between detection limit and 

measurement range: 

▪ If stream concentrations are low, and low nitrate-N values are to be quantified 

accurately, a longer path length will be required, but this will limit the measurement 

range – for example, a 35 mm pathlength will probably over-range at concentrations 

greater than 15 mg/L (this will effectively be the upper limit of quantification). 

▪ If a wide measurement range is required, accurate quantification during periods of low 

concentrations will be compromised – a larger proportion of results less than the 

measurement threshold will be obtained. 

▪ If measurement over a wide concentration range is required, and accuracy at low 

concentration is required, it may be necessary to deploy two instruments.  If the 

concentration ranges are strongly related to season, it may be possible to match 

instruments to the seasonal conditions, swapping short- and long pathlength 

instruments at appropriate times in an annual monitoring programme.  
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Figure 3-8: Theoretical relationship between transmittance and nitrate-N concentration according to 
sensor pathlength.  Reproduced from Figure 7 in Pellerin et al. (2013).     

 

Information regarding pathlength and measurement range is available from several instrument 

manufacturer websites.  A table of values for the TriOS OPUS device is provided in Figure 3-9. 

 

Figure 3-9: Relationship between pathlength and measurement range for several water quality variables 
for the TriOS OPUS instrument.  Reproduced from the TriOS website https://www.trios.de/en/opus.html.      

https://www.trios.de/en/opus.html
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Recent laboratory trials conducted in the NIWA Hamilton Water Quality Laboratory identified that it 

is essential to understand the instrument response to nitrate-N over a wide concentration range – 

this includes the algorithm and reported concentration.  For example, it was identified that a revision 

to the software used in the s::scan Spectra::lyser device caused the instrument to report apparent 

nitrate concentrations over a wide concentration range.  These were observed as an “inverted U” – 

reported nitrate concentrations increased in response to increasing nitrate-N concentrations until 

the upper limit of quantification was reached, but thereafter, reported nitrate concentrations 

decreased in response to continuing increase in actual nitrate concentration in solution.  The 

previous versions of the software would alert the user to this phenomenon, whereas the current 

version of software fails to do so, continuing to provide apparent nitrate concentrations that are 

incorrect.  As a consequence, it is possible to obtain a reported nitrate-N concentration at two 

different actual nitrate-N concentrations.8  This is not an instrument malfunction or failure – it should 

be regarded as a software-imposed limitation.  It highlights the importance of thoroughly 

understanding the measurement principle, the nature of interference, and the instrument-specific 

algorithms that are used to compensate for interferences.  Using these instruments as a “black-box” 

could lead to recording spurious or inaccurate data.  The NIWA results are currently being reviewed 

in conjunction with the local instrument representative and will be documented in an internal NIWA 

report during 2019.  

3.2.5 General comments  

In-situ continuous measurement of nitrate-N has been used for considerable time (e.g., Finch et al. 

(1998)).  The issues outlined above are to some extent overcome using several different techniques: 

use of several wavelength signals to compensate for interference from particulate and dissolved 

organic material, by temperature compensation (mainly for sea waters, owing to effect on bromide 

interference) (Langergraber et al. 2003; Sakamoto et al. 2009; Caradot et al. 2015; Uusheimo et al. 

2017), and by development of alternate calibration algorithms (Etheridge et al. 2014a; Etheridge et 

al. 2014b; Lepot et al. 2016).    

From the material presented above and in other technical literature, caution is required when 

selecting and using in-situ sensors.  All waters have different spectral properties, and more or less 

compensation may be required.  Work done at NIWA using the Spectra::lyser devices has 

demonstrated the need for caution when calibrating an instrument.  Care is required to ensure that 

the blank water is of sufficient optical purity, and it is important to ensure that the calibration 

algorithm is appropriate.  A “Global calibration” file is supplied with the instrument, in addition to 

the other calibration files referred to in Figure 3-7.  It is unwise to assume that the “Global 

calibration” file is appropriate for all natural waters, or indeed for a single river or stream under all 

seasonal conditions, until successfully demonstrated.  Techniques such as standard additions9 allow 

some of these measurement issues to be resolved, but a good understanding of the strengths and 

weaknesses of the technique is required to ensure that one source of error is not replaced with 

another (Ellison and Thompson 2008).  

 

 
8 Greg Olsen, Stephan Heubeck, James Sukias, Mike Crump and Neale Hudson.  Unpublished results obtained from NIWA SSIF projects 
FWWQ1823 and FWWQ1909. 
9 E.g., “Standard additions - Royal Society of Chemistry” www.rsc.org/images/myth-reality-technical-brief-37_tcm18-214868.pdf  

http://www.rsc.org/images/myth-reality-technical-brief-37_tcm18-214868.pdf
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3.3 Instrument precision and accuracy 

Instrument precision and accuracy are subject to several factors, including electronic noise and 

matrix effects.  Unless the instrument develops a fault, electronic noise is largely out of the control of 

the operator.  Should a fault develop, erratic behaviour such as transient spikes, failure to record or 

generate a signal, or substantial drift over time may occur.  These faults require expert attention 

from a qualified service agent or the manufacturer. 

Errors associated with matrix effects may however be managed and addressed by the operator.  

When determining precision and accuracy, it is important to remember how these are evaluated by 

the manufacturer.  Typically, they are determined under ideal conditions, using samples and 

standards created with ultra-high purity water and reagents, measured under stable, ideal 

conditions, and with minimal interferences from the matrix.  Often precision and accuracy are 

estimated using nitrate-N concentrations well within the potential measurement range of the sensor.  

In reality, sample concentrations are measured in environmental samples where nitrate 

concentrations may vary widely, and where the matrix is subject to continual subtle or substantial 

variation over various time scales.  The measurement principle makes it essential to account (as far 

as possible) for light absorbing and light scattering materials.  These dissolved and particulate 

substances interfere with transmission of light from the source to detector.  The instrument design, 

components and software used to measure nitrate-N attempts to minimise these matrix effects. 

The discussion in section 3.2 (and sub-sections) identified several factors that should be considered 

before sensor selection and deployment, and during operation.  Recognising and addressing these 

factors will help ensure that data of adequate accuracy and precision are collected.   
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4 Sensor selection, deployment and maintenance   
Evaluation of the performance of specific instruments is not within the scope of this report.  

Considerable resources have been used by the USGS to identify factors that should be considered 

prior to purchasing and deploying nitrate sensors, and once data acquisition is in progress.  Several 

publications are available that summarise the outcomes of detailed assessment of field and 

laboratory trials, which include comparison of the performance of several instrument types.   

The USGS has invested heavily in continuous nitrate sensors, and several readily accessible texts have 

been have published that provide useful guidance regarding instrument selection, typical 

performance in laboratory and field situations, and collection and management of time-series data 

generally, and hyperspectral analysers specifically.  Key points from several reports are listed Table 

4-1, and some are discussed in detail in later sections. 

Table 4-1: Useful reference and guidance materials that should be considered by anyone wishing to 
undertake continuous monitoring using a nitrate sensor.  These reports are available on the USGS website at 
https://www.usgs.gov/products/publications/official-usgs-publications. 

(Snazelle 2015; Snazelle 

2016) 

Equipment from several different manufacturers were assessed in 

laboratory and field situations.  Non-linear response with 

concentration was observed, and the effects of temperature (minor), 

turbidity and dissolved organic matter were observed.   

The importance of applying data correction protocols was stressed.   

For all instruments tested, proprietary algorithms addressed the 

effects of turbidity increase on measured nitrate-N better than effects 

related to dissolved organic matter concentrations.  Accuracy 

specifications were used to identify trends or drift in sensors as a 

response to changes in sample matrix. 

(Bergamaschi et al. 2017) Use standard operating procedures to ensure consistency of data 

collection, instrument operation and sample collection, handling and 

analysis.  Use these procedures to ensure that suitably trained staff 

conduct field and office activities consistently over time, and across 

the team. 

Examine incoming data daily; establish normative ranges; determine 

whether data falls with defined ranges. 

For burst sampling, estimate the reproducibility of data within the 

burst (assess coefficient of variability against predetermined criteria). 

Compare results from nearby stations to determine whether changes 

or shifts in data are due to sensor drift or malfunction. 

Collect grab water samples on each visit to provide points against 

which high frequency time series data may be “anchored’. 

Use automatic sampler samples to validate instrument performance 

over hydrological events, periods of high constituent variability etc. 

https://www.usgs.gov/products/publications/official-usgs-publications
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Implement techniques for infilling missing data or correcting data that 

are obviously erroneous.  This may include use of other continuously-

measured water quality variables, such as electrical conductivity, 

water temperature and solar radiation.  For this to be meaningful, it is 

essential that strong relationships be demonstrated between 

covariant water quality variables. An example of suitable techniques 

include those demonstrated by Smith (2018). 

Collect adequate metadata – this includes site information, and 

details regarding the equipment used for surveys or deployed at a 

specific location. 

Independent auditing of site operation and data allows systematic 

errors to be detected, and also provides an opportunity for review of 

the fitness for purpose of the programme to provide the required 

information. 

(Wagner et al. 2006) General principles applicable to all continuous water quality 

monitoring sensors, specifically site selection and sensor placement, 

and data review, evaluation and correction procedures.  

(Pellerin et al. 2013) Developed specific techniques for deployment, operation and data 

quality assurance. 

Identified the trade-off between sensitivity, accuracy and 

concentration range over which measurement is possible.   

Useful definitions provided: 

Accuracy: the degree of agreement between measured nitrate-N and 

the true value.  This is pathlength, instrument noise and matrix 

dependent. 

Precision: the range or scatter of results provided by the instrument 

when making repeated measurements of the same sample under the 

same conditions.  These measurements may occur within a short 

space of time, or over a period. 

Measurement range: the difference between greatest and least 

measurable value.  No single instrument is able to measure across the 

0-100 mg/L range identified by manufacturers for the continuum of 

pathlength setup/sample matrix.  Range is principally dependent on 

pathlength. 

Detection limit:  the lowest value measurable for a given 

sensor/pathlength combination at 99% confidence level.  Detection 

limit is principally dependent on pathlength, detector sensitivity and 

instrument noise.  True detection is determined through instrument 

specific calibration and repeated measurement. 
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Resolution: the minimum difference between measured values 

reported by the instrument. 

Matrix effects:  constituents in the sample that absorb or scatter light, 

interfering with light transmission to the detector. 

Instrument performance: the net effect of combined influences 

defined above; best determined through measurement of standards 

and spiked matrices before deployment and after servicing. 

(Bennett et al. 2014) Provides an example of a quality assurance plan developed to guide 

staff within a specific jurisdiction.  Describes the standards, policies 

and procedures used for the collection, processing, storage, analysis 

and release of continuous water quality data. 

Addresses requirements such as health and safety considerations, 

staff training and data correction procedures.  Several appendices are 

included that provide detailed instructions in appropriate cleaning 

and calibration processes. 

Examples of records that should be considered for collection and 

storage are also provided. 

 

Chapter 5 Section D, “Water Quality” of Book 1, “Collection of Water Quality by Direct 

Measurement” (Pellerin et al. 2013) is a very useful guidance document.  It is accessible on the USGS 

website10, and all prospective and current users are directed to this document.   

The National Environmental Monitoring Standards (NEMS) website11 should also be consulted – 

standards have been published for continuous dissolved oxygen12 , water temperature and turbidity, 

and they identify and address very similar criteria to those relevant to use of nitrate sensors.  The 

requirement for Standards for several other water quality variables suitable for continuous 

measurement has also been identified, and as these Standards are developed they will assist with 

activities such as selection, calibration and operation of nitrate sensors. 

4.1 Sensor selection 

The section “Sensor selection” of Pellerin et al. (2013) is informative.  A series of questions are 

provided to guide the process – the key ones are:  

1. What is the expected range of environmental conditions at the site? 

2. What data specifications for nitrate-N concentration at the site exist? 

3. What site requirements and logistical considerations exist? 

These questions should be relatively easy to answer using currently available information, and 

information and statements regarding the purpose of monitoring that have been gathered.  Table 3 

of Pellerin et al. (2013) identifies specific water quality characteristics that should be assessed when 

 
10 https://pubs.er.usgs.gov/publication/tm1D5  
11  http://www.nems.org.nz/    
12 http://www.nems.org.nz/assets/Documents/NEMS-15/Dissolved-Oxygen.pdf  

https://pubs.er.usgs.gov/publication/tm1D5
http://www.nems.org.nz/
http://www.nems.org.nz/assets/Documents/NEMS-15/Dissolved-Oxygen.pdf
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selecting the measurement solution – it has potential to be converted into a flow chart that could aid 

decision making. 

Pellerin et al. (2013) reminds prospective users that unique criteria and considerations may apply at 

each site, and these need to be addressed in a site-specific manner.  This may extend to bypassing, 

revising and adding to the “out of the box” tools provided with the hardware. 

4.2 Instrument performance verification – pre-deployment activities 

Pellerin et al. (2013) recommend that equipment performance should be verified prior to 

deployment.  This includes visual inspection on receipt, recording serial numbers, ensuring that 

cables, peripherals and connectors are undamaged.  The sensor windows deserve special attention, 

because damage to them will impair any subsequent measurement. 

Operation of the equipment should be assessed in a laboratory or other controlled environment.  

Key steps include: 

1. Measuring the “nitrate” concentration in air and in suitable quality water.  High quality 

“spectrally pure” water is required for this purpose.  If required, zero the instrument. 

2. Using a range of suitable standard solutions similar to those likely to be measured in the 

river(s) of interest:  

i. Ensure a linear measurement performance over the range of concentrations expected 

on site.   

ii. Assess the accuracy of the measurement – the difference between the standard 

concentration and the instrument reported concentration (expressed as absolute or 

proportional (%) difference) – “sample accuracy”. 

iii. Assess the precision of measurement from the standard deviation of the difference 

between known and measured concentrations of a standard solution (“analytical 

precision”). 

3. Compare the values from step 2 with those provided in the manufacturer’s specifications, and 

remedy deviations as required. 

4. Repeat steps in 2) using representative samples of water from the intended deployment site to 

which known amounts of nitrate-N have been added (matrix spikes).   

i. Analysis of these samples provides recovered “sample accuracy” and “sample 

precision”. 

ii. Care should be taken to maintain particulate material in suspension, and to monitor 

turbidity over the duration of the measurement. 

iii. Spiked matrix samples should be discarded daily, to minimise the effects of biological 

activity. 

5. Where elevated turbidity and/or DOM is likely, the spiked matrix samples should be further 

modified to represent the particulate and DOM concentrations likely at the site.  Instrument 

performance should be verified in response to these sample matrix changes as well. 
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4.3 Instrument deployment 

Stable sites that represent the water of interest are essential.  The principles and techniques outlined 

by Wagner et al. (2006) regarding deployment of other continuous sensors may be transferred to 

nitrate sensors as well.  The NEMS for Dissolved Oxygen and Turbidity measurements are other 

useful references. 

Infrastructure requirements that should be considered for safe and reliable operation of equipment 

follow.  Several of these are illustrated with photographs in Appendix H and Appendix I. 

Suitable scaffolding, channel, and conduit for keeping the sensor and associated cables in place in a 

secure manner, but without altering the site characteristics or hindering measurement, and without 

impairing future sensor recovery, inspection or calibration.  These requirements need to be assessed 

on a case-by-case, site-specific manner, but with regard to general in-situ water quality monitoring 

principles. 

Pumped vs in-river deployment of sensors, and when should an out-of-channel deployment be 

considered? 

Preventing fouling and obscuring of the sensor optical windows requires specific attention.  Wiper 

units may be mounted on the sensors to clean windows and remove detritus.  Air jets may be used to 

remove deposited materials as well.  Mounting the sensor so that the optical windows are vertical, 

and underneath the sensor body will minimise deposition on the windows, or adherence of air 

bubbles on the windows themselves.   

The choice of automatic cleaning device requires careful consideration.  Should the stream or river 

contain significant suspended sediment load, use of compressed air for cleaning may not be 

appropriate.  It is possible that entrainment of particulates with the compressed air could cause the 

optical windows to be “sand-blasted”, causing physical abrasion to the glass.  This would cause 

serious damage to a key component of the optical measurement system, leading to drift, inaccuracy, 

and shortening of the instrument life.  These problems are far less likely when a mechanical brush or 

wiper is used to remove detritus or biofilm. 

Transfer of data – proprietary software and specific controllers and hardware may be required, 

which could potentially complicate data transfer.  The distance of the sensor from the logger will 

under some circumstances determine cable length, type and signal type (analogue or digital). 

Power requirements – some equipment was designed for process monitoring and control, and 

meeting power requirements in the field may prove challenging.  Power requirements will be 

determined on a site-by-site basis, according to measurement frequency, requirement for ancillary 

devices and controllers (e.g., solenoid valves for cleaning, wipers, pumps to provide water to sensors 

located out of the river channel etc.). 

Data collection frequency – nitrate sensors allow high frequency measurement, analogous to other 

water quality sondes.  The ability to collect data at high frequency does not however necessitate high 

frequency data collection.  Unless very short duration or transient changes in nitrate concentration 

need to be assessed, there is little benefit in collecting data at high frequency.  This is discussed in 

the three case studies presented in subsequent sections.    Once again, useful guidance is available 

from the NEMS (specifically the DO measurement document, which recommends that data are 

collected at 15-minute frequency), and (Pellerin et al. 2013; Chappell et al. 2017).  Burns et al. (Burns 

et al. 2016) provide an example of uses of high-frequency data, and demonstrate how optimal 
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measurement frequency may be determined.  Their work describes daily nutrient dynamics in detail.  

Generally, this level of understanding exceeds the requirements of resource managers, but if such 

information is required, it is probably better obtained using fixed-duration, dedicated deployment 

campaigns.    

Pellerin et al. (2013) differentiate between sampling interval (the time between discrete 

measurements), and the reporting interval (the time between individual data points stored in an 

archive).  It is recommended that data are collected in “burst mode”, where several measurements 

are recorded at high frequency over a finite period of time, which are then averaged to provide a 

reported value.  The discrete data recorded during the “burst” may be used to assess uncertainty of 

the reported value, or emerging problems arising from window fouling and lamp deterioration. 

The reporting interval will be a compromise between excessively frequent measurement and loss of 

information.  The latter should be defined in a monitoring programme design document.  Excessive 

measurement increases power requirements, and shortens the lamp life. 

4.4 Maintenance 

General principles regarding maintenance of other equipment deployed in rivers should be 

considered.  Some of the experiences of practitioners are included in Appendix H and Appendix I, 

which should be read in parallel. 

1. Frequent review of data retrieved from the field is recommended.  Daily inspection of nitrate-

N sensor data, or automated assessment of the record to detect obvious performance issues is 

essential.  This will assist in early identification of sensor problems, including fouling, damage 

or failure, as illustrated in Appendix J. 

2. Collect validation samples. These are submitted to a laboratory for independent assessment 

of nitrate-N concentrations. 

3. Field maintenance of sensors includes site and instrument inspection, cleaning (including 

removal of deposited minerals, if necessary).  The frequency of inspection may be determined 

principally by budget constraints, but should also have regard for historical issues, which may 

indicate that more or less frequent inspection is required.  The workshop discussion indicated 

that monthly inspection appears adequate for larger rivers, but in smaller streams with lower 

flows, more frequent inspection and cleaning may be required (illustrated in Appendix J).  Site 

inspection activities should include measurement of field blanks and calibration samples, and 

collection of grab samples for laboratory analysis. In the case studies presented later in this 

document, validation samples were typically collected monthly to coincide with routine SoE 

discrete water sampling or site maintenance, with additional samples collected using 

autosamplers to target specific rainfall events.  Pellerin et al. (2013) identify several steps that 

should be considered for inclusion with site inspection protocols (refer to Appendix H through 

Appendix J). 

3.1 Site inspection – examination of the site, river channel, infrastructure, etc.  Pay specific 

attention to changes in water level relative to instrument depth, light levels and other factors that 

will directly affect sensor measurements.   

3.2 Collect field readings with another suitably calibrated instrument of the same make and 

model, preferably located adjacent to the installed instrument for a period of time.  If this is not 

possible, collect a sample for laboratory measurement using similar equipment.   



 

40 Review of high frequency water quality data 

 

3.3 Collect a field measurement with the fixed sensor prior to cleaning and calibration.  If nitrate-

N concentrations are variable, collect a sample in a large container for measurement before and 

after cleaning. 

3.4 Remove the sensor from the measurement location. 

3.5 Inspect the sensor for signs of damage, lens scratching and fouling, etc.  Take photographs as 

required.  Specifically assess: 

i. Fouling, staining and scratching of optical windows. 

ii. Damage to seals around windows. 

iii. Damage to the sensor housing. 

iv. Damage to wipers or compressed air ports. 

v. Damage to cables, compressed air lines, etc.   

vi. Evaluate the efficacy of in situ cleaning (e.g., air sparging or automated wipers) and note 

whether chemical staining is evident or if chemical cleaning is required. 

vii. In out of channel configurations, inspect the pump and associated cables and piping, as 

well as the flow-through chamber.  In some environments, particulate clogging and 

abrasion of pumps and impellers may require attention.   

3.6 Clean sensors – optical windows should only be cleaned with soft-bristle brushes or lint-free 

lens paper.  Dilute hydrochloric acid may be used for chemical cleaning (minerals), and ethanol may 

be used for removal of organic contaminants.  The sensor must be rinsed with water, distilled water 

and high purity water for subsequent checks.  Wipers and ancillary devices should also be cleaned, 

taking care to only use cleaning agents that will not damage components. 

3.7 Perform fouling check – measure nitrate concentrations after replacing the sensor in the river, 

or using a sample collected earlier (step 2.2 above).  Where necessary, these measurements may be 

used to make adjustments for fouling (e.g., Wagner et al. (2006), or other suitable procedures). 

3.8 Perform a baseline calibration check (particularly important for single channel instruments) – 

this will require removal of the instrument, and measurement of a sample of water of suitable 

quality spiked with nitrate.  Prior to such measurement, the instrument must be rinsed thoroughly 

with optically pure water to ensure matrix effects are minimised.  During measurement, ensure 

bubbles are absent from the windows and that stray light is minimised.  Baseline checks must be 

done with uncontaminated water.  If the baseline is corrected, take additional readings with optically 

pure water to ensure that a new blank falls within the specified criteria. 

3.9 Check response linearity – where appropriate and necessary, the instrument may also be 

checked to ensure a suitably linear response to nitrate concentration.  This would be done using a 

series of nitrate standards prepared in optically suitable water.  Where linearity is not as expected, 

spiked matrix samples could be used, but these would generally be measured in the laboratory. 

4.5 Data processing 

Existing council water quality monitoring procedures probably could be expanded to include the 

evaluation and processing of data derived from nitrate-N sensors, including additional steps where 
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necessary.  Experience gained from processing data derived from continuous DO and turbidity 

sensors should be instructive.  Where staff lack experience, the processes documented by Wagner et 

al. (2006) are likely to be informative. 

Two key activities are:  

▪ Fouling and drift correction (to account for step changes etc., arising from cleaning 

sensors after a period of gradual deposition or fouling by biological materials). 

▪ Bias correction – likely to arise from interferences in natural waters.  Several criteria 

guide appropriateness of bias correction: 

− The error must be systematic (i.e., in one direction, and not random). 

− Adequate numbers of results are available to allow meaningful comparisons. 

− The relationship between the two data sets must be strong (R2>0.8). 

− The slope of the regression line should be close to 1 (0.9-1.0), or the variation 

across the range of nitrate-N concentrations may be accounted for. 

Pellerin et al. (2013) provide examples of data sets where the assumptions underlying bias correction 

are broken.  In these circumstances, other measures may be required to improve the quality of data. 

4.6 Reporting codes  

The water quality variable or parameter code or description should be explicit in several areas: 

▪ Whether the value is nitrate-N or nitrate- plus nitrite-N (this will be determined by the 

algorithm used). 

▪ That the data were collected by in-situ measurement (i.e., a sensor deployed in the 

river, or supplied with a continuous flow of pumped river water). 

▪ Whether the units are concentration of nitrate (NO3
- ), or nitrate-N (where nitrate-N = 

NO3
- /4.42 mg/L) 

4.7 Final data evaluation and review 

The procedures followed by Pellerin et al. (2013) for nitrate sensors are based on general USGS 

methods (Wagner et al. 2006), and exceed those recommended in the NEMS for DO measurement 

(NEMS 2016).  In particular, Pellerin et al. (2013) recognise that the trade-off between pathlength, 

accuracy and measurement range make it important to use instrument “accuracy ratings” to 

evaluate the performance of individual instruments, and when comparing data derived from various 

instruments.  Accuracy ratings reflect the combined correction of bias, fouling and drift.  Values 

suggested by Pellerin et al. (2013) are summarised in Table 4-2. 
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Table 4-2: Accuracy ratings derived from fouling, drift and bias correction applied to discrete samples.   
The sensor accuracy may be manufacturer specifications, or user-calculated values.  After Pellerin et al. (2013). 

Accuracy rating Specification 

Excellent within sensor accuracy limits 

Good ±1-3 times sensor accuracy 

Fair ±3-4 times sensor accuracy 

Poor ±4-6 times sensor accuracy 

 

The reliability of data derived from continuous nitrate sensors is strongly dependent on several 

factors, some out of the user’s control.  These factors include: interferences (particulate and 

dissolved substances - many different materials may interfere, and their absolute and relative 

concentrations may vary over time), fouling, drift and bias.  In addition, the light source is subject to 

deterioration over time.  Acquiring accurate, fit-for-purpose data necessitates addressing all these 

factors, which in turn requires that adequate quality assurance procedures are put in place. 

The NEMS approach to data collection and storage provides a template that may be modified to 

adequately address the requirements of continuous nitrate sensors.  The quality coding approach 

could also be adopted, with suitable metrics identified to account for accuracy rating and other 

factors.  It would be useful to have regard for materials such as Annex C of the DO NEMS, which 

relates data quality to calibration and quality assurance effort, making the point that the effort 

invested needs to relate the quality of data required. 
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5 Introduction to case studies – data and methods 
This section briefly outlines the Otago Regional Council (ORC), Environment Southland (ES) and NIWA 

nitrate-N data that are evaluated in Sections 6, 7 and 8, respectively. Methods of data evaluation are 

also outlined. 

5.1 Data used 

The nitrate-N data evaluated later in this report are summarised in Table 5-1 and are drawn from 

continuous nitrate-N sensor deployments in Otago and Southland rivers.  

ORC installed two TriOS OPUS nitrate-N sensors in September 2016 in the Kakanui River, North 

Otago, as part of an investigation into increasing nitrate-N concentrations observed in the river over 

time. Council staff collected manual grab samples for verification and calibration of the continuous 

data. Three TriOS NICO sensor were installed during July 2017 in the Shag River with continuous 

conductivity sensor; data will be used in the Shag River groundwater study. After these sensors serve 

their purpose in these two studies, there are plans underway to relocate them to various other SoE 

locations.  Only data for the Kakanui River sites were considered in this report. 

ES has invested in continuous water quality monitoring in several river catchments.  Currently TriOS 

nitrate-N sensors are in place on the lower Aparima and Oreti rivers, with further installations 

planned for the Makarewa River, the middle reaches of the Oreti River and on the Mataura River at 

Mataura Island, which represents the lower reaches of the river upstream of tidal influence. The 

lower river reach sites are “key node” locations that have been identified for measurement to reduce 

uncertainty in estimation of contaminant loads to sensitive estuarine receiving environments, and to 

improve confidence when assessing the effectiveness of management actions and policy aimed at 

reducing contaminant load.  Only data for the Aparima River site were considered in this report. 

Under its Environmental Information Innovations Programme, NIWA runs two TriOS OPUS nitrate-N 

sensors on the Mataura River in Southland and a third TriOS sensor on the Hurunui River in 

Canterbury. The dual Mataura River deployment seeks to provide information on in-situ (i.e., 

deployed in the river channel) vs out-of-channel (deployed bankside, receiving water pumped from 

the river) sensor performance. Laboratory validation data derived from monthly grab samples and 

flow-proportional automatic samples are available for both sensors. 

The Kakanui, Aparima and Mataura river data are used in a series of case studies in Sections 6 to 8 to 

demonstrate various procedures to which continuous nitrate-N data may be subject, and the uses to 

which the data may be put.  Not all procedures were applied to all the data sets, but sufficient work 

was done to demonstrate the various processes and procedures discussed earlier in this report, as 

well as providing guidance on how these are carried out.  Topics considered include: 

▪ Sampling frequency – how much is enough? 

▪ Sensor biofouling – how do sensor biofouling and cleaning affect nitrate-N 

measurements? 

▪ Load estimation – what impact does measurement frequency have on load estimates?  

▪ Trend detection – does trend detection benefit from increased sampling frequency? 

▪ Spatial comparisons – what benefit does paired measurement provide? 
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▪ In-river vs out-of-channel (pumped) measurement – what are the relative benefits? 

▪ Quality assurance – what do we learn from these case study data? 

Table 5-1: Details of high frequency sensors, water quality data and flow measurement at sites in the 
Otago and Southland regions. Data type descriptions largely provided by contributing agencies. 

Agency Site Frequency Data type Start End Comment 

ORC Kakanui at Mill Dam C Flow 7/09/2016 2/11/2017 Continuous 
data at 5 
minute 
frequency 

 Kakanui River at 
Gemmels 

G Nitrate nitrogen 
Nitrite nitrogen 
Nitrite/Nitrate 
nitrogen 
Suspended Solids 
(Lab) 
Turbidity 

2/02/2016 20/12/2017 Event-related 
sampling 

 
Kakanui River at  
Gemmels Crossing 
Bridge 

C Nitrate TriOS 
Dissolved Organic 
Carbon TriOS 
Total  Suspended 
Solids TriOS  
ABS360 TriOS 

7/09/2016 2/11/2017  Continuous 
data at 5 
minute 
frequency 

  G Nitrate nitrogen 
Nitrite nitrogen 
Nitrite/Nitrate 
nitrogen 
Suspended Solids 
(Lab) 
Turbidity 

2/02/2016 20/12/2017 Event-related 
sampling 

 
Kakanui at McCones C Nitrate TriOS 

Dissolved Organic 
Carbon TriOS 
Total Suspended 
Solids TriOS 
ABS360 TriOS 
Flow 

7/09/2016 6/04/2018 Continuous 
data at 5 
minute 
frequency 

  G Nitrate nitrogen 
Nitrite/Nitrate 
nitrogen 
Suspended Solids 
(Lab) 
Turbidity 

5/02/2016 18/01/2018 Event-related 
sampling 
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Agency Site Frequency Data type Start End Comment 

ES Aparima River at 
Thornbury 

C continuous flow 1/04/2015 19/04/2018 Continuous 
data at 10 
minute 
frequency 

  C Nitrate-nitrogen 
(TriOS OPUS) 
Turbidity (WTW in-
situ) 
Conductivity (WTW 
in-situ) 

1/04/2015 12/03/2018 Continuous 
data at 10 
minute 
frequency 

  G Nitrogen (Nitrate 
Nitrite) 
Nitrogen (Nitrate) 
Nitrogen (Nitrite) 
Turbidity (Lab FNU) 
Turbidity (Lab) 

  Event-
related 
sampling 

NIWA Mataura River at 
Mataura Island 

C Flow 
Nitrate nitrogen 
(TriOS OPUS) 

17/3/2016 20/3/2018 Continuous 
data at 5 
minute 
frequency 

   Nitrate nitrogen 
(TriOS OPUS) 

17/3/2016 20/3/2018 Continuous 
data at 5 
minute 
frequency 

  G Nitrate nitrogen 
Suspended sediment 
(Lab) 

10/8/2016 9/1/2018 Event-
related 
sampling 

 

5.2 Data handling and processing 

Data retrieval 
For the assessments in Sections 6 and 7, data were retrieved from the Hilltop server at each 

organisation as an XML file, which was converted at the NIWA Christchurch office into CSV files.   

The ES TriOS nitrate-N data were provided in two formats – as a continuous data set, together with 

flow data and other continuously measured water quality variables, as well as a field within the 

discrete or grab sample water quality record, matched using the date-time stamp.  This facilitated 

further analysis. 

The ORC data were provided as a continuously measured TriOS nitrate-N field within the 

continuously measured hydrology record.  The grab or discrete water quality data were provided in a 

separate file, and it was necessary to append these data to the continuously measured hydrology 

data at the corresponding data and time stamp; in some cases manual adjustment of the time of 

collection was required. 

For the assessment of the Mataura River data in Section 8 of this report, data were provided in CSV 

file format for further analysis.  The data files include a NEMS-like quality code (200, non-verified), 

and approval rating (50).   

 



 

46 Review of high frequency water quality data 

 

Data were used “as received”, with one exception.  The water quality data received from ORC for the 

Kakanui River sites were initially supplied without sample times.  A second data set was supplied with 

sample collection times, as well as data for additional water quality monitoring site located a few 

hundred metres further downstream from one of the original sites.    

Initial data processing was undertaken using MS Excel.  Steps included: 

1. Storing the data as-received from each council on a series of folders in a Raw Data 

folder. 

2. Creating a duplicate data file on a series of folders in a Working folder. 

3. In each file, altering the heading row content as required. 

4. Creating uniform style and format date, time and date and time fields. 

5. Where necessary (for grab samples) replacing censored values (below detection limit 

data) with half the detection value. 

6. Creating additional date and time fields in numeric and text formats to meet other 

software requirements, and to ensure that importing and exporting data into and out 

of other software did not corrupt dates and times. 

7. Selecting and matching specific data from the continuous flow file with the 

intermittent, more random frequency grab water quality sampling data using the 

VLOOKUP function within MS Excel. 

8. Merging separate data files (grab sample water quality) with continuously measured 

data files using the facilities within Systat v13. 

8.1 In some cases, it was necessary to revise the sample time field to ensure the 

grab water quality result could be matched with a TriOS measurement.  For 

example, the time of collection of the grab water quality sample from the 

Kakanui River at Gemmels Crossing Bridge on 6/5/2016 was 09:18.  This value 

cannot be directly matched with a corresponding TriOS nitrate-N value – the 

nearest values were 09:15 or 09:20.   

8.2 In this specific instance the collection time was altered to 09:20 using an Excel 

rounding function, which then allowed the grab water quality record to be 

aligned with the TriOS nitrate-N and hydrology record.   

8.3 This was done for each water quality sample where required (fewer than five 

per site). 

9. If necessary, exporting data back to Excel for use as input files to specialist modelling 

software.  Microsoft Excel pivot tables were useful for two reasons: 

9.1 They allowed calculation of hourly average data “on the fly”. 

9.2 They provided a convenient method for eliminating duplicate rows that were 

generated either during retrieval from the data archive, or during conversion 

of the XML file to a CSV file.  For example, the modelling tool used (LOADEST) 

is limited to hourly or less frequent data – to use this tool, a pivot table was 
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used to generate hourly average flow and water quality values (for continuous 

and grab sample data), which were then assessed. 

10. Selecting specific files and repeating earlier actions to ensure that key steps led to 

repeatable outcomes. 

11. Throughout all of the above processes, maintaining a record of actions. 

One of the challenges of dealing with high frequency time series data is the size of data file.  Data 

were collected at five-minute intervals.  For the Kakanui River at McCones site for example, a fifteen-

month period comprised more than 240,000 rows of data.  For most purposes, hourly average or 

even daily average data appeared adequate.  For much of this assessment (Section 6.1), hourly 

average data were used. 

Care was required when merging grab water quality data files with the hydrology and TriOS time 

series data.  Use of a date-time value field of the form YYYYMMDDhhmm was a useful check to 

ensure that dates and times aligned correctly during the merge process.   

YYYYMMDD and hhmm fields are also required for LOADEST load calculations, described briefly in 

Section 5.4. 

Data gaps were not filled – this is a task that is associated with standard hydrological practice.  In 

some cases, techniques may have to be developed for this requirement.  For the purposes of this 

report, these gaps had negligible impact on the outcomes, or were retained to indicate why they 

should be repaired. 

5.3 Graphical and statistical summaries 

All figures and summary statistics were prepared using Systat for Windows, v13. 

5.4 Load estimation 

Three basic methods were used for load estimation: 

▪ For grab samples, instantaneous load was calculated as the product of concentration in 

the sample and the streamflow at the time of sampling, expressed as mass/unit of 

time; for this report, all load estimates were reported as kg/d. 

▪ A similar process was followed for TriOS nitrate-N concentration values, which were 

multiplied by the corresponding flow value to provide instantaneous, hourly or daily 

load estimates (the latter using Excel pivot table functionality). 

▪ LOADEST, an open source modelling tool produced and maintained by the USGS 

(Runkel et al. 2004):   

“LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers.  

Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST 

assists the user in developing a regression model for the estimation of constituent load (calibration). 

Explanatory variables within the regression model include various functions of streamflow, decimal time, 

and additional user-specified data variables. The formulated regression model then is used to estimate 

loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 

percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and 



 

48 Review of high frequency water quality data 

 

estimation procedures within LOADEST are based on three statistical estimation methods.  LOADEST 

output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation 

method and in interpreting the estimated loads. 

In specific cases, simple regression techniques were used to provide yield estimates to cross-check 

the results derived from the other techniques.  

The load estimates were provided as a time-series for the extent of the flow record.  These data were 

used to assess the seasonal characteristics of nitrate-N loads, and the relationship between 

contaminant load and flow during specific hydrological conditions, such as during base-flow, during 

seasonal flood events, and over discrete ’flood’ events.  

No attempt was made to fill in any missing data.  
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6 Case study 1: ORC Kakanui River data 
As outlined in Section 5, the Otago Regional Council (ORC) deployed TriOS nitrate-N sensors in the 

Kakanui River at Gemmels Crossing Road and (downstream) at McCones in 2016.  The deployments 

were made to investigate the influence of nitrogen-rich groundwater entering the river downstream 

of Gemmels Crossing, with groundwater considered the likely reason for increasing trends observed 

at a long-term SoE site at McCones. This SoE site has been sampled at monthly intervals for many 

years. A time series of grab nitrate-N concentrations for the McCones site, and grab sample 

concentrations from two other sites, are shown in Figure 6-1.  Although the record is discontinuous 

for two of the three sites, a general increase in nitrate-N concentrations over time is evident.  The 

record also indicates periodic high concentration episodes, such as in the mid-1990s and in the early 

2000s. 

 

Figure 6-1: Time-series of NNN concentration at three SoE sites on the Kakanui River.  Additional details 
associated with these data are shown in Table 5-1. 

 

Figure 6-2 shows the annual median nitrate-N concentration over the entire data period, where the 

increasing concentration is still evident (note the y-axis has a log10 scale).  The right-hand figure 

suggests an increase in nitrate-N concentrations during the period the TriOS devices were deployed 

as well. 

  

Figure 6-2: Nitrate-N concentration at three sites on the Kakanui River.  Left:  Annual median values, Right: 
Grab sample concentrations for the more recent period corresponding to the TriOS deployment period.  Note 
y-axis has log10 scale. 
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In Figure 6-3 the grab sample concentration is compared with the TriOS concentration recorded at 

the corresponding time for each site.  In general, the grab sample record corresponds tolerably with 

that of the TriOS estimates.  Poorer relationship is evident during periods of low nitrate-N 

concentration, particularly at the Gemmels Crossing Road site between September to November 

2016.  The later period of the Gemmels Crossing record also indicates deterioration in the TriOS data 

quality with increasing periods of values less than 0 mg/L.  Fewer negative values are observed for 

the McCones site, suggesting a site-specific issue at the upstream Gemmels Crossing site.   

The relationship between grab sample results and TriOS estimates are explored further in Figure 6-4. 
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Figure 6-3: Relationship between grab sample nitrate-N concentration and TriOS sensor results over time 
(left), and difference between measurements and grab sample concentration (right).  Note y-axis has log10 
scale. 

The data summarised in Figure 6-4 indicate that the TriOS sensor tends to over-predict nitrate-N 

concentrations at both sites.  Non-parametric models (Appendix A) applied to these data indicate a 

high adjusted-R2 value for both sites (0.994 and 0.997 for the Gemmels Crossing and McCones sites, 

respectively).  The residuals plots show few outliers, and reasonably random and even distribution of 

residuals, indicating a robust relationship.  

Figure 6-4 A) indicates the difference between the two measurement techniques.  At both sites the 

difference between the two measurements tends to be greatest at lowest grab sample 

concentration.  At the McCones site the difference ranged from approximately 15% to almost 43%, 

and the median difference was 6%, whereas at the Gemmels Crossing site the difference ranged from 

approximately 4% to almost 63%, and the median difference was 25%.  However, the two data sets 

are quite different because: 

▪ All grab sample nitrate-N concentrations at the Gemmels Crossing site were <0.25 

mg/L, whereas for the McCones site, 0.25 mg/L represented the 40th percentile (i.e., 

60% of data exceeded 0.25 mg/L). 

▪ For the Gemmels Crossing data that exceeded 0.1 mg/L (the lowest grab sample 

concentration reported for the McCones site), the difference between grab and TriOS 

values was less than 20% – very similar to the differences observed at the McCones 

site. 

The above results suggest that the practical limit of quantification requires consideration. 



 

52 Review of high frequency water quality data 

 

 

  

  
A B 

  

Figure 6-4: Relationship between grab sample and TriOS sensor nitrate-N concentrations for two sites.  
The top row indicates the absolute difference between TriOS estimates and grab sample results, the second 
row show the difference between TriOS estimates and grab sample results as a proportion of the grab sample 
estimate, and the third row shows a regression of TriOS estimates against grab sample results, where the black 
dotted line indicates the 1:1 relationship.   
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6.1 Kakanui River at McCones site 

Data for the McCones site were selected for more detailed assessment.  The time series of flow, grab 

sample nitrate-N concentrations and TriOS measured nitrate-N concentrations for the period 

September 2016 to April 2018 are summarised in Figure 6-5.  There are several features to note: 

▪ The period of record contains several periods of flood- and stable flow. 

▪ There are several transient spikes in the TriOS nitrate-N data (both positive and 

negative). 

▪ There are several events where an apparent step-change in TriOS sensor response 

occurred – some step changes appear to be related to flow events (e.g., November 

2016, April 2017), but others of similar magnitude (June 2017, July 2017, February 

2018) occur in periods of stable flow. 

▪ Several manual sensor-cleaning events occurred. 

 

Figure 6-5: Time series of grab sample nitrate-N (black dots), hourly average TriOS sensor concentrations 
(red line) and river flow (blue line).  The vertical broken lines indicate sensor cleaning events.   

6.1.1 Flow-concentration relationship 

Figure 6-6 highlights the very large difference between the number of grab samples and TriOS sensor 

estimates of nitrate-N concentration.  It is difficult to determine the nature of the discharge-

concentration relationship from the limited number of grab samples available (concentrations vary 

by an order of magnitude, whereas discharge varies by approximately three orders of magnitude).  

The tenuous relationship between concentration and discharge is also evident in the TriOS sensor 

results.  These results confirm however that nitrate concentrations generally fall within a range from 

0.1 – 1.0 mg/L unless flow exceeds approximately 80-100,000 L/s.  Load estimation using a model 

that regresses available grab sample concentration values against flow is likely to have considerable 

uncertainty because of the poor correlation.    
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Figure 6-6: Relationship between grab sample concentration and flow (left), and TriOS sensor estimate 
and flow (right).     

6.1.2 Effects of manual cleaning  

Manual cleaning of the sensor (indicated by the vertical broken lines in Figure 6-5, as well as in detail 

for two cleaning events in Figure 6-7) suggest that cleaning had minimal effect on the quality of the 

data, i.e., the automatic cleaning of the device prevented build-up of material that could attenuate 

light, degrade the optics and impair measurement.  Physical obstruction of the light path or change in 

the matrix during cleaning (i.e., removal of the device from the water column) caused transient 

spikes at the time of cleaning, but there is no sign of an offset or discontinuity in the record arising 

from the cleaning activity itself. 

Comparison of the five-minute and hourly average data in Figure 6-7 also suggests that there is little 

visual difference in the measured values as a consequence of averaging; the transient spike caused 

by the cleaning itself is still evident in the hourly average data. 

  

  

Figure 6-7: Time series of grab sample and TriOS sensor nitrate-N concentrations and river flow (blue line) 
for two representative cleaning events.  The vertical broken lines indicate sensor cleaning events.  The left-
hand graphs use one-hour average data, and the right-hand graphs show the original data collected at five-
minute intervals.  
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6.1.3 Transient spikes 

Figure 6-5 shows several positive spikes in TriOS nitrate-N concentration, and more negative spikes.  

Most of the latter are less obvious because this figure uses hourly average data.  Figure 6-8 shows 

the relationship between instantaneous nitrate-N and flow, for nitrate-N concentrations >1 mg/L or 

<0 mg/L, respectively.  Although “spikes” may occur over the entire concentration range, there is a 

greater tendency for these to occur under higher flow conditions.  Most TriOS values >1.0 mg/L occur 

above a flow threshold of approximately 80,000 L/s, whereas TriOS nitrate-N values <0 mg/L tend to 

occur during flows <30,000 L/s.   

   

Figure 6-8: Relationship between TriOS sensor nitrate-N concentrations and river flow for categorised 
data.  The panel on the left presents nitrate-N concentration >1 mg/L and the dashed vertical line indicates 
80,000 L/s., The middle panel presents nitrate-N concentrations <0 mg/, where the dashed horizontal line 
indicates -0.85 mg/L and the vertical dashed line indicates 5,000 and 30,000 L/s respectively.  In the right panel, 
all data are presented and the vertical dashed lines indicate 5,000 L/s and 80,000 L/s respectively. 

 

As Figure 6-8 indicates, the overwhelming bulk of measurements do not comprise apparent “spikes”. 

From Figure 6-5 it appears that nitrate-N concentrations greater than approximately 1 mg/L could 

potentially be regarded as spikes.  There are 138 five-minute time periods in the record where the 1 

mg/L threshold is exceeded (0.08% of the record).  As indicated in Figure 6-9, these values occur in 

seven discrete “events”, extending over periods between 10 min and approximately 10 hours.  It is 

not clear whether the spikes are a consequence of material partially obscuring the sensor’s light 

path, or over-ranging of the sensor (exposure to nitrate-N concentrations that exceed the 

measurement range of the sensor/path length combination), or a combination of these and other 

factors.   

Values <0 mg/L represent 0.98% of all measurements, and as Figure 6-9 demonstrates, these values 

occur within approximately 14 events.  Figure 6-9 indicates that these transient events occur 

infrequently, have common characteristics and are therefore likely to be manageable – either during 

data collection, or post collection, using conventional quality assurance/data cleaning procedures.  

Following data cleaning, these data are unlikely to have significant impact on subsequent water 

quality assessment activities. 
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Figure 6-9: Time series of TriOS sensor nitrate-N concentrations ≥1 mg/L (left) or <0 mg/L (right).   

6.1.4 Frequency of data collection/reporting/analysis 

The data from the Kakanui River at McCones site were collected at five-minute frequency.  A 

reasonable question arises: “Is this frequency or intensity of data collection desirable or necessary?”  

Figure 6-10 present data for a 19-day period, and thereafter for a one-week, one-day and one-hour 

subset of this period.  This figure demonstrates that for a river of the size of the Kakanui River, one-

hour average data are able to represent transient changes in nitrate-N concentration adequately for 

periods greater than one-hour in extent.  Unless information for extremely transient events or very 

rapid changes is required, there appears to be little benefit in collecting data at five-minute intervals.   
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Figure 6-10: Time series of TriOS sensor nitrate-N concentrations, April-May 2017.  The small blue crosses 
represent the raw data collected at five-minute intervals, while the red dots are hourly average data. The three 
lower figures represent a seven-day, one-day and one-hour period, respectively. 

 

Figure 6-11 presents data for a (61-day) period that incorporates (limited) grab samples, with the 

TriOS data presented as both hourly average and five-minute data.  The two-month time period was 

selected to include a transient negative spike, a period of persistent negative values, and a large flow 

event.  None of the grab samples coincide with the flood event, and during the flood event the 

frequency of TriOS nitrate-N measurement is not able to improve our understanding of the 

discharge-concentration relationship during a period of anomalous (negative) measurements.  It is 

not clear whether measurement failed, or if the time-series actually represent changes in nitrate 

concentration.  It is possible that the transient downward spike and period of low nitrate-N 

concentrations reflects dilution of nitrate-N – concentrations summarised in Figure 6-10 (May 2017) 

were higher than those presented in Figure 6-11 (November 2016).  The data demonstrate that 

additional information may be required to interpret the observed concentration data.  Collecting 

data at higher frequency may not improve our understanding of nutrient mobilisation or catchment 

processes on its own.  
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Figure 6-11: Time series of TriOS sensor nitrate-N concentrations, November 2016.  Top left panel – hourly 
average values, plus grab samples (black dots) for the selected 61-day period.  Top right panel – five-minute 
data collected over a ten-day period. Bottom panel – five-minute data over a three-day period. 

 

6.1.5 Understanding flow and contaminant dynamics 

The dynamic relationship between flow (Q) and contaminant (C) concentrations and loads has been 

long-established.  One of the first formal examination of these relationships was undertaken by 

Williams (1989), who identified five principal classes of C–Q relationship, one with three subclasses.  

Williams identified several metrics which may be used to help characterise the C–Q relationship.  

More complex approaches have followed, including assessment of the shape and size of hysteresis 

loops, calculation of the area inside the hysteresis loop, along with several metrics (Lawler et al. 

2006; Lloyd et al. 2016a; Lloyd et al. 2016b).  Both Lawler et al. and Lloyd et al. (op cit.) provide 

examples of hydrographs and associated hysteresis curves.  The shape of hysteresis curves identified 

by Williams (1989) are summarised in Table 6-1.  The C/Q criteria relate to ratios calculated on the 

rising and falling limbs of the hydrograph at similar values of Q. 
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Table 6-1: Classes of C-Q relationships.  Derived from Williams (1989), who also provides references to 
earlier work.  C and Q denote concentration and discharge, and the subscripts r and f denote rising and falling 
limbs of the hydrograph, respectively. 

Class Subclass Relationship C/Q criteria 

I A Straight line (C/Q)r ≈ (C/Q)f 

B Curve, with slope increasing with 
increasing Q 

Slope becomes steeper as Q increases 

C Curve, with slope decreasing with 
increasing Q 

Slope becomes flatter as Q increases 

II  Clockwise loop (C/Q)r > (C/Q)f for all values of Q 

III  Anticlockwise loop (C/Q)r < (C/Q)f for all values of Q 

IV  Single line plus loop (C/Q)r ≅ (C/Q)f for one range of Q values 

(C/Q)r < or > (C/Q)f for other range of Q values 

V  Figure eight (C/Q)r > (C/Q)f for one range of Q values 

(C/Q)r < (C/Q)f for other range of Q values 

 
These general relationships between concentration and discharge may be used practically in several 
ways: 

▪ it is generally assumed that clockwise hysteresis, caused by concentration increasing 

more rapidly than discharge during the rising limb, suggests a contaminant source 

close to the monitoring point, and 

▪ anticlockwise hysteresis generally signifies a longer lag between the discharge and 

concentration peak, suggesting that the contaminant source was located further from 

the monitoring point. 

This general behaviour is influenced by many factors presented by each unique river/catchment/land 

use combinations.  Figure 6-10 presents data for a period that contained two minor flood events.  

This period can be examined to illustrate how high frequency data may be used to better understand 

discharge-concentration relationships, and practical uses for this information.   

Figure 6-12 (left) presents data for the first flood event (1/05/2017).  The discharge concentration 

relationship is equally well defined using either the five-minute or hourly average data.  During this 

event, discharge increased without any change in nitrate concentration on the rising limb of the 

hydrograph.  Shortly after the flood peak occurred, substantial (and rapid) dilution of nitrate-N 

occurred, followed by a slower increase in nitrate-N.  Plotting nitrate-N against discharge (right hand 

figure) demonstrates a distinct clockwise relationship.  
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Figure 6-12: Time series of TriOS sensor nitrate-N concentrations and discharge 1-2 May 2017 (left), and 
concentration-discharge relationship (right).   

Figure 6-13 extends the discharge-concentration data for a seven-day period presented as a time 

series in Figure 6-10, which includes the minor flood event of 1 May 2017, and a second one event on 

4 May 2017.  There appears to be little information loss in using hourly average data;  both data sets 

demonstrate the dilution that occurred once flow had peaked, followed by concentration increase on 

the recession limb of the hydrograph.   

  

Figure 6-13: TriOS nitrate-N concentration-discharge relationship – hourly average data (left), and five-
minute data (right).  Data for period 1-7 May 2017, inclusive. 

6.1.6 Diurnal concentration changes 

Data for two periods of similar, relatively stable flow where diurnal fluctuation in nitrate-N 

concentration occur are presented in Figure 6-14 and Figure 6-15.  In February 2017, the diurnal 

fluctuation (as hourly median) was relatively small (~0.03 mg/L), whereas in December 2017 it was 

approximately 0.15 mg/L.  In February 2017, the maximum and minimum concentrations occurred at 

approximately 13:00 and midnight, whereas in December 2017 maximum concentration values 

occurred at approximately 07:00, and minima occurred at 19:00.   In December the diurnal variation 

was also very distinct.  
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Figure 6-14: Change in TriOS nitrate-N concentration with time, 15-20 February 2017.  Time-series (top), 
where the blue line denotes river flow, and variation in nitrate -N concentration by time of day (bottom), 
presented as box-and-whisker plots – where the horizontal line in each box denotes the median hourly 
concentration. An explanation of a box and whisker plots produced by Systat is included in Appendix B. 
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Figure 6-15: Change in TriOS nitrate-N concentration with time, 20-26 December 2017.  Time-series (top), 
and variation in nitrate-N concentration by time of day (bottom), presented as box-and-whisker plots. An 
explanation of the symbols used in box and whisker plots is included in Appendix B.  The blue line denotes river 
flow. 

 

Cyclical diurnal changes in nitrate-N concentrations were also observed in the Manawatu River 

during 2016 and 2017 (Burkitt 2013).  Data were presented for several days during two seasons, 

which indicated that the magnitude of change was larger (0.06 mg/L and 0.16 mg/L for February 

2016 and March 2017, respectively).  The pattern in diurnal change in nitrate-N concentration was 

quite different between these two periods as well, but were not dissimilar to those observed in the 

Kakanui River.   

In the Manawatu River in summer 2016, concentrations increased during daylight hours and peaked 

at 17:00, whereas in autumn 2017, concentrations peaked at approximately 09:00, and lowest 

concentrations occurred at about 18:00.  These changes were related to periphyton processing of 

nutrients, wastewater discharges and construction activities (Burkitt 2013).   

 

Period 15-21 Feb 2017

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

T
ri
o

s
 n

it
ra

te
-N

 c
o
n

c
.

(m
g

/L
)



 

Review of high frequency water quality data  63 

 

More recent publications (Hensley et al. 2014; Hensley and Cohen 2016; Rode et al. 2016) have 

identified similar seasonal changes in diurnal nitrate-N concentrations.  Aubert and Breuer (2016) 

related these seasonal changes to varying contributions arising from hydrological conditions, 

(specifically evapotranspiration and water limitation), and energy inputs.  Examples presented for a 

data set identified as “Cluster G” by Aubert and Breuer (2016) were similar to those seen in the 

Kakanui River in January 2018, with maximum concentrations around midnight, and daily minima in 

the late afternoon (Aubert and Breuer 2016).  Concentrations then declined gradually, but recovered 

rapidly each day.  This is clearly evident in the Kakanui River during December 2017. 

6.1.7 Load estimation 

Load estimation is considered in detail in the next case study (Section 7.1.3), but a summary of load 

estimates derived from grab samples and TriOS data is provided here.  Figure 6-16 demonstrates a 

strong linear relationship between grab sample instantaneous load and the instantaneous load 

estimated from the paired TriOS concentration.  This is not surprising, because earlier a strong 

relationship was demonstrated for the paired concentration data. The positive bias in load estimates 

is related to the positive bias previously noted for nitrate-N concentrations (introductory part of 

Section 6.1). 

 

 

  

Figure 6-16: Comparison of instantaneous nitrate-N load estimates derived from TriOS sensor 
measurements and grab sample concentrations.  The figure on the left indicates the relationship between 
these load estimates with the dashed line showing the 1:1 relationship, and the right-hand figure shows the 
predicted estimate, and upper and lower confidence intervals and prediction intervals, derived from a least 
square regression model. 

Figure 6-17 shows a time series of instantaneous load estimates derived from two unrelated 

methods.  There is a reasonable relationship between the two model results under low flow 

conditions, but the two estimates appear to diverge quite strongly during periods of elevated flow 

(which correspond to periods of elevated instantaneous load – see Figure 6-5).  The grab sample 

regression model does not adequately represent the peak instantaneous loads.  This is possibly a 

reflection of the relatively limited number of samples representing periods of elevated flow.  By 

contrast, the TriOS estimates indicate a considerable number of events during which nitrate-N loads 

are elevated.  The consequence of the grab sample regression model failing to predict peak nitrate-N 

loads becomes evident when these data are considered as seasonal average values.  This is 

demonstrated in Figure 6-18 which indicates very large differences in daily average loads predicted 
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for November 2016, April 2017, July 2017 and February 2018.  The loads estimated from the TriOS 

data in July 2017 and February 2018 are questionable, because they contain two periods where 

spikes occurred. As a consequence, these estimates have high uncertainty.  The confidence intervals 

related to the other TriOS monthly estimates are generally much smaller than those associated with 

the grab sample regression model. 

 

Figure 6-17: Comparison of instantaneous nitrate-N load estimates derived from hourly average TriOS 
sensor measurements and grab sample concentrations, using a regression model.  The black dots are the grab 
sample instantaneous load estimates while the red and blue lines denote the TriOS sensor and river flow, 
respectively. Note y-axis has a  log10 scale. 

  

Figure 6-18: Comparison of monthly instantaneous nitrate-N load estimates derived from hourly average 
TriOS sensor measurements and grab sample concentrations, using a regression model.  The red symbols 
represent the 95th percent upper and lower confidence intervals. 
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The difference between the two estimation techniques is also evident at a seasonal scale, as shown 

in Figure 6-19.   

 

Figure 6-19: Comparison of seasonal instantaneous nitrate-N load estimates derived from hourly average 
TriOS sensor measurements and grab sample concentrations, using a regression model.  Season 1= March-
May, Season 2 = June-August, Season 3 = September- November, and Season 4 = December- February. 

Estimation of contaminant loads should always be undertaken having regard for the 

representativeness of the data.  When grab samples are used to estimate contaminant loads, there 

are generally far fewer concentration results than river discharge (flow) values.  In the exercise 

illustrated in Figure 6-17, the regression model did not appear to adequately capture high flow loads.  

Although the load estimates could be improved by refining the regression model, the limited number 

of grab sample data is likely to be the factor that limits the usefulness of the model estimates.  Figure 

6-16 indicates caution is required in assuming that the larger number of TriOS estimates will 

automatically improve load estimates.  Prior to estimating the load of nitrate-N, the data should be 

reviewed carefully and decisions made regarding high concentration results – are these real data?  

Do the estimated load or flux values look plausible?  Are load or flux estimates improved by using 

five-minute vs one-hour or daily average concentration data? 

6.1.8 Trend assessment  

The data for the Kakanui River at McCones site was selected to investigate whether high frequency 

nitrate measurement has the potential to improve temporal trend detection.  Several subsets of data 

were prepared for the assessment (Table 6-2).  Each data set was analysed using the “Seasonally 
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adjusted trend test”, included in the TimeTrends statistical package (vX), which is widely used in New 

Zealand for this purpose.13   

Table 6-2: Summary of data sets selected for trend assessment.   The trend analysis results are summarised 
in Appendix D. A + indicates increasing nitrate-N concentrations. 

Data source Description of data set 
Number of 

data 

Result of test at 5% 
significance level 

Direction of 
trend 

Rate of 
change 

(%/year) 

Grab samples 1983-2018 308 + 3.84 

Grab samples Grab samples that coincide with period of 
TriOS data 2016-2018 

28 Not 
significant 

- 

TriOS instantaneous 
with spikes removed 

Data where concentration fell in range 0.0 to 
2.0 mg/L, inclusive 

237,923 + 19.8 

TriOS hourly average 
with spikes 

Average hourly value for each hour  13,646 + 22.5 

TriOS hourly average Average hourly value for each hour for data 
where concentration fell in range 0.0 to 2.0 
mg/L, inclusive 

13,506 + 19.8 

TriOS daily Single hourly average record selected for 
10:00-11:00 for each day 

564 + 19.1 

TriOS daily  Single record selected for 10:30 each day 564 + 19.1 

TriOS weekly Single record selected for 10:30 for 1st, 8th, 
15th, 22nd day of each month 

91 + 25.3 

TriOS fortnightly Single record selected for 10:30 for 1st and 
15th day of each month 

36 + 28.1 

TriOS monthly Single record chosen for each of 10th and 15th 
of each month 

16 and 17 Not 
significant 

- 

 

The results of assessment are summarised in Table 6-2 and included in full in Appendix D.  Appendix 

D also includes an assessment to determine trend in variance over time using the output from the 

TriOS daily subset of data.  Points to note from this assessment: 

▪ The long-term grab sample record indicates a trend over the period 1983-2018, 

whereas the limited grab data available for the 2016-2018 period (n=28) do not 

indicate a statistically significant trend.   

▪ For the TriOS data set, inclusion of the spikes increases the slope of the trend, which is 

misleading, and confirms the requirement to screen and remove questionable data.  

▪ Very similar estimates of slope are provided by the TriOS instantaneous, hourly 

average and single daily data (19.1-19.8 %/year). 

▪ As the TriOS measurement interval increases to weekly and fortnightly frequency, the 

slope of the trend increases, and for the fortnightly data, the probability of incorrectly 

detecting trend begins to increase. 

 
13 http://www.jowettconsulting.co.nz/home/time-1  

http://www.jowettconsulting.co.nz/home/time-1
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▪ Monthly data are clearly unsuited to the task of reliably detecting trend over a 

relatively short period. 

▪ The assessment of trend in variance in TriOS estimates over time could potentially be 

used to validate instrument performance and ensure high quality data are being 

collected.   

− Hyperspectral analysers rely on a high intensity light source, which is subject to 

deterioration. 

− Biofouling or deposition of minerals on optical windows may not be detected 

during maintenance visits if it is difficult or unsafe to retrieve the device. 

The results of the trend assessments and similar analyses of high frequency data could be used to 

more rigorously determine the optimal sampling frequency to detect and reliably quantify water 

quality trend (i.e., assist with refining monitoring programme design).  However, caution is required 

because improvement (or further degradation) in water quality often occurs over a long period of 

time.  The data analysed were collected over a relatively short period of time – while the direction 

and magnitude of trend may be determined with accuracy and confidence, the results could not be 

extrapolated or hind-cast. 
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7 Case study 2: ES Aparima River data 
As outlined in Section 5, Environment Southland (ES) has deployed a TriOS nitrate-N sensor in 

Aparima River at Thornbury to assist with nutrient load measurement and management.  This section 

compares TriOS vs. grab sample data, and looks at range of uses of the data such as temporal trend 

assessment and nitrate-N load calculation. 

7.1 Comparison of grab sample and TriOS nitrate-N concentrations  

The time series of river discharge, grab sample nitrate-N and TriOS estimated nitrate-N concentration 

data are summarised in Figure 7-1.   

 

Figure 7-1: Time series of discharge, grab and 10-minute TriOS nitrate-N concentration data.  Small red 
crosses = TriOS sensor estimates, blue dots = grab samples, cyan = discharge (flow) data.   

Summary statistics for these data are provided in Table 7-1, which includes a graphical summary of 

the two data sets.  Points to note: 

▪ median and mean grab sample nitrate-N concentrations are larger than those derived 

from the TriOS sensor 

▪ minimum values estimated by the TriOS sensor are 22% smaller than those derived 

from grab samples 

▪ maximum values estimated by the TriOS sensor are 15% larger than those derived 

from grab samples, and 

▪ although the concentration range derived from the TriOS sensor is larger than that 

indicated by grab samples, the interquartile range is smaller.  

Provided a robust relationship between the two techniques over the observed concentration range 

can be demonstrated, it is highly likely that the TriOS sensor will provide better estimates of 

minimum and maximum nitrate concentrations because of the better representation of all flow, 

season, and time of day conditions.    
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Table 7-1: Summary statistics for nitrate-N concentrations derived from grab water samples and 
continuous TriOS sensor measurements. Data selected for the period 1/4/2015-31/3/2018.  These data are 
shown as part of a time series in Figure 7-1.  An explanation of a box and whisker plot is provided in Appendix 
B.  “Cleveland percentiles” are calculated using the method of Cleveland, an option in the Systat software. 

 Statistic 
Nitrate-N concentration (mg/L)   

 

 

Box and whisker plot showing the distribution of 
all grab and TriOS sensor concentration data  

 

Grab  TriOS    

N 322 149523    

Minimum 0.142 0.110    

Maximum 2.400 2.770    

Range 2.258 2.660    

Interquartile range 0.700 0.548    

Median 0.965 0.660    

Mean 1.008 0.714    

Standard Error of Mean 0.029 0.001    

Mode - 0.380    

95.0% LCL of Mean 0.952 0.712    

95.0% UCL of Mean 1.064 0.716    

Standard Deviation 0.513 0.380    

Variance 0.264 0.144    

Cleveland percentiles        

1.0% 0.174 0.190    

5.0% 0.300 0.250    

10.0% 0.357 0.290    

20.0% 0.529 0.370    

25.0% 0.610 0.402    

30.0% 0.650 0.450    

40.0% 0.833 0.530    

50.0% 0.965 0.660    

60.0% 1.120 0.750    

70.0% 1.269 0.860    

75.0% 1.310 0.950    

80.0% 1.451 1.060    

90.0% 1.692 1.230    

95.0% 2.000 1.390    

99.0% 2.300 1.850    

 

The time series for grab and TriOS nitrate-N concentrations is shown in Figure 7-2, and the 

relationship between paired grab sample and TriOS nitrate-N concentrations are shown in Figure 7-3.  

Summary statistics for the pairs of data are provided in Table 7-2.   
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Figure 7-2: Time series of paired grab sample and TriOS sensor nitrate-N concentration data.Grab samples 
represent a combination of manual and automatic sampling. 

 

 

 

Figure 7-3: Relationship between paired grab sample- and TriOS sensor nitrate-N concentration data.  The 
blue line is the 1:1 relationship line.   
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Table 7-2: Summary statistics for nitrate-N concentrations derived from paired grab water samples and 
continuous TriOS sensor measurements. Only data for paired samples where both grab nitrate-N >0 mg/L and 
TriOS nitrate-N >0 mg/L are included.  These data are shown as a time series in Figure 7-2.  An explanation of a 
box and whisker plot is provided in  Appendix B.  “Cleveland percentiles” are calculated using the method of 
Cleveland, an option in the Systat software. 

 Statistic 
Nitrate-N concentration (mg/L) 

  
 

Box and whisker plot showing the distribution of 
grab and TriOS estimated concentration data 

where pairs of data exist 

 

 Grab  TriOS   

N  285 285  

Minimum  0.142 0.160  

Maximum  2.400 2.290  

Range  2.258 2.130  

Interquartile Range  0.693 0.740  

Median  0.940 1.060  

Mean  0.997 1.079  

Standard Error of Mean  0.031 0.030  

95.0% LCL of Mean  0.936 1.020  

95.0% UCL of Mean  1.058 1.138  

Standard Deviation  0.521 0.504  

Variance  0.271 0.254  

Cleveland percentiles       

1.0%  0.170 0.240  

5.0%  0.287 0.378  

10.0%  0.350 0.410  

20.0%  0.500 0.565  

25.0%  0.600 0.670  

30.0%  0.640 0.780  

40.0%  0.835 0.900  

50.0%  0.940 1.060  

60.0%  1.100 1.230  

70.0%  1.250 1.350  

75.0%  1.293 1.410  

80.0%  1.445 1.465  

90.0%  1.670 1.760  

95.0%  2.025 2.050  

99.0%  2.300 2.250  

 

Assuming that the lab-analysed grab samples accurately represent stream nitrate-N concentrations, 

the key points to note from assessment of the paired data are: 

▪ The TriOS sensor generally overestimated minimum, median and mean nitrate (12%, 

12% and 8%, respectively). 

▪ The TriOS sensor tended to underestimate maximum nitrate concentrations slightly 

(approximately 4%). 

▪ The ranges and interquartile ranges for the two measurement techniques were more 

similar than for the entire data set, varying by approximately 5% and 7%, respectively. 
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There is a robust relationship between the TriOS and grab nitrate-N data sets (shown in detail in 

Appendix E).  The difference between measurements made with these two estimation techniques is 

summarised in Figure 7-4(A and B).  Figure 7-4(A) indicates that the difference between the two 

measurements is reasonably consistent across the entire concentration range, but with an increasing 

tendency for grab sample results to exceed TriOS estimates at the higher grab sample values.  Figure 

7-4(B) indicates that the differences between the two measurements are approximately normally 

distributed.   

A 

 

 

B 

Figure 7-4: Difference between grab sample and TriOS sensor nitrate-N concentrations for paired data.  
Values in A) are the differences plotted as a function of grab sample nitrate-N concentration, and B) shows the 
distribution of the differences in concentration data.   

A non-parametric Kolmogorov-Smirnoff test indicates that the nitrate-N values derived from the two 

measurement techniques are significantly different (maximum difference is 0.105, critical D = 0.086) 

at the 95% confidence level.  The distribution of paired data is shown in Figure 7-5, which confirms 

that the TriOS sensor provides slightly larger estimates of nitrate-N across the concentration range.   

 

A 

 

B 

Figure 7-5: Distribution of grab sample (blue) and TriOS sensor (red) nitrate-N concentrations for paired 
data.  The dashed vertical line in b) is for reference purposes only. 
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Although the differences in nitrate-N concentrations derived from the two measurement techniques 

are not large, the potential for bias should be considered carefully before these data are used for 

resource management purposes.  If the measurement technique and/or the frequency of sampling 

can be demonstrated to alter the outcomes of the assessment, it may be necessary to review how 

nitrate-N concentrations are determined at key times.  This approach is analogous to measurement 

of dissolved oxygen concentrations – there is no point in measuring dissolved oxygen concentrations 

at midday in winter, if dissolved oxygen minima information is required. 

7.1.1 Use of continuous nitrate-N measurement for nutrient processing assessment 

Two subsets of the continuous data record were selected to demonstrate information related to 

diurnal processes for the Aparima River during two seasons.  The time periods were selected to 

capture relatively stable river flows in autumn and late spring 2017 (Figure 7-6). 

During the spring period, nitrate-N concentrations varied by approximately 0.035 mg/L (~5.5%), 

whereas in autumn the concentration varied by approximately 0.045 mg/L, a change of 

approximately 12%.   

  

Figure 7-6: Time series of TriOS sensor nitrate-N concentrations for two seasonal periods.Discharge (flow) 
is indicated by the blue line.    

The approximate timing of daily minima and maxima was similar during both seasonal periods 

(Figure 7-6).  This is different to what has been reported in the other reported study undertaken in 

New Zealand. In the Manawatu River, very marked differences in the timing of minimum and 

maximum concentrations were observed, and the difference between minima and maxima was also 

much larger (Burkitt et al. 2017).  The flows in the Manawatu River were probably larger (ca. 10,000 

L/s) than those recorded in the Aparima River, although it is difficult to accurately estimate this from 

the figure provided.  The timing of nitrate-N minima and maxima also differ from those identified in 

two periods in the Kakanui River (Section 6).  In addition to flow, concentration differences probably 

arise from latitude and climate differences, as well as other catchment-specific factors, such as the 

importance of groundwater in delivering nitrate-N to the Kakanui River.  Although these differences 

cannot be explained fully at this time, obtaining a better understanding of nutrient processing is 

likely to be an important factor when developing policy for management of land uses and water 

resources at the catchment or Freshwater Management Unit scale.  These considerations are likely to 
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be particularly key for annual periods, when toxicity issues may occur, or where reduction of 

nuisance periphyton growth requires specific management action.  

 

A 

 

B 

Figure 7-7: Diurnal variations of TriOS sensor nitrate-N concentrations during two different seasonal 
periods. A) Autumn 2017, B) late Spring 2017.  Title numbers refer to the day of the month, vertical lines 07:00 
and 17:00 respectively, included for reference purposes only.  Note that the y-axis scales are different.  
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7.1.2 Flow and contaminant dynamics 

High frequency measurement of nitrate-N concentrations can assist with understanding river flow 

and concentration relationships, as well as flow and instantaneous yield (flux).  Figure 7-8 

summarises relationships between flow and concentration, and flow and load over a six-day 

hydrological event.  Key points to note: 

▪ The magnitude of load is (as expected) more strongly influenced by changes in flow 

than by changes in concentration, and the timing of load transport closely reflects the 

hydrograph shape.  

▪ Nitrate-N concentrations increase on the rising limb of the hydrograph, but some 

dilution occurs soon thereafter. 

▪ As a consequence of this dependence, nitrate-N concentrations increased 

approximately three-fold, whereas the flux increased at least 20-fold.  

The contaminant-flow (C-Q) relationship is complex. Using the broad descriptors provided by 

Williams (1989), summarised in Table 6-1, a general clockwise loop exists, complicated with a figure 

eight.  These relationships suggest an immediate response characteristic of a nearby contaminant 

source, as well as more complex C-Q relationship on rising and falling limbs of the hydrograph. 

A B 

  
C D 

  

Figure 7-8: Variations of TriOS sensor nitrate-N concentrations and instantaneous load (flux) over a short-
duration hydrological event. A) and C) variation in concentration, B) and D) variation in flux.    

A further example is provided in Figure 7-9 where an eight-hour break in the TriOS concentration 

record exists around 23 May 2017.  The break in the record is also associated with a step change in 

apparent concentration.   
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An elongated, clockwise C-Q relationship exists, which translates into a steep increase and decrease 

in instantaneous load.  The break in the concentration record translated into the load estimate as 

well.  Although a seven-hour break in the record is unlikely to alter an annual load estimate, it is 

important at the daily time scale.  Ideally quality assurance procedures would detect the gap in the 

record, and a process would be followed to fill the data gap, and if appropriate, apply a correction to 

connect the data sets more smoothly before and after the gap.  Such processes exist for some other 

continuous data (e.g., rainfall and flow data are often used to address gaps in continuous turbidity 

records). The apparently invariant concentration after the break in the record also warrants 

investigation. 

A 

 
B C 

  

Figure 7-9: Variations of TriOS sensor nitrate-N concentrations and instantaneous load (flux) over a short-
duration hydrological event. A) and B) variation in concentration, C) variation in flux.    

7.1.3 Load estimation 

As outlined in Section 5.4, many techiques exist to calculate the load of a contaminants transported 

in a stream or river.  More than 300 nitrate-N concentration values with a matching discharge 

estimate are available for the Aparima River over the period 1 April 2015 to 31 March 2018, from 

which an instantaneous load may be calculated.  The relationship between grab sample 

concentration data and flow and TriOS sensor estimates and flow are summarised in Figure 7-10.  

The grab sample collection strategy has provided a good distribution of concentration data over the 

entire flow range, and the seasonal distribtion of data are also adequate.  The distribution of grab 
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and TriOS sensor concentrations by flow conditions and season is summarised in Table 7-3 and Table 

7-4, respectively.  A higher proportion of grab samples were collected under high flow and winter 

conditions – this ensures that the conditions during which the greatest nitrate-N load is generated 

and transported have been well-characterised.  As a consequence, there is likely to be a good 

relationship between regression model estimates and estimates derived from the TriOS sensor data, 

after accounting for missing records. 

  

Figure 7-10: Relationship between grab and 10-minute TriOS nitrate-N concentrations and discharge (flow).  
The dashed vertical lines indicate 4,000 L/s and 100,000 L/s respectively.  The number of grab samples 
collected per season was Autumn 134, Winter 107, Spring 33, and Summer 48, respectively.   

 

Table 7-3: The number of nitrate-N concentration measurements according to three broad flow 
categories.   These data and the two flow thresholds are shown in Figure 7-10. 

Flow value (L/s) 

Grab TriOS 

No. concentration  
estimates 

Proportion of  
total (%) 

No concentration  
estimates 

Proportion of  
total (%) 

All flow conditions 322 100 149,523 100 

<4,000 10 3.1 18,760 12.5 

4,000-100,000 199 61.8 126,897 84.9 

>100,000 113 35.1 3,862 2.6 

 

Table 7-4: The number of nitrate-N concentration measurements by season.  These data are summarised 
in Figure 7-10. 

Season 

Grab TriOS 

No. concentration  
estimates 

Proportion of  
total (%) 

No concentration  
estimates 

Proportion of  
total (%) 

Autumn 134 41.6 37,040 24.8 

Winter 107 33.2 34,982 23.4 

Spring 33 10.3 38,794 25.9 

Summer 48 14.9 38,707 25.9 
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Grab sample and TriOS sensor ten-minute nitrate-N load estimates agree well, as shown in the time 

series in Figure 7-11.  This is not surprising given the good relationship observed between grab 

sample and TriOS sensor concentrations (e.g., Figure 7-3).   

 

 

Figure 7-11: Comparison of nitrate-N load estimates derived from grab sample and TriOS sensor 
concentrations and discharge (flow). The lower figure has a log10 y-axis scale to better demonstrate small 
values of mass load.   

 

Figure 7-12 demonstrates the good correspondence between instantaneous load estimated from 

grab samples and that estimated using the TriOS sensor measurements for a period containing a 

period of low flow, a major flood event and several minor flood events.  The TriOS estimates 

represent the maximum and minimum loads well, and fill the gaps between grab sample estimates in 

a plausible manner.   

It is clear however that two of the three minor peaks during the period 11-28 February 2018, would 

not have been detected if just grab samples were available.  With regard to grab sample flux 

estimates, none of the short-term variation in flux evident during most of January 2018 would be 

revealed.  This short-term variation in nitrate flux arises from diurnal variation in nitrate 

concentrations, discussed in Section 7.1.1.   
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Figure 7-12: Comparison of nitrate-N load estimates derived from grab sample and TriOS  sensor 
concentrations and discharge for a rain event following a period of low flow. The figure on the right has a 
log10 y-axis scale to better demonstrate small mass load values.   

 

Relatively few periods exist between April 2015 and March 2018 where TriOS sensor estimates are 

not available.  Where gaps in the concentration record exist, these will either have to be filled with 

concentration estimates, or some other modelling technique is required to create a continuous 

estimate of load.  Figure 7-13 provides a period of almost three weeks during which TriOS sensor 

concentration estimates were not recorded.  This creates a gap in the load estimate record as well.    

  

Figure 7-13: Comparison of nitrate-N load estimates derived from grab sample and TriOS sensor 
concentrations and discharge (flow) during a period of missing record. The figure on the right has a log10 y-
axis scale to better demonstrate small values of mass load.   

 

Several sets of load estimation data were generated to explore the effect that the number of 

concentration samples has on the estimation of catchment loads, as well as to demonstrate the 

requirement for different load estimation techniques for specific periods.  The series of subsets of 
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data that were generated are described in Table 7-5.  The load estimates derived from these subsets 

of data were then compared with the loads estimated using the ten-minute TriOS data.   

Table 7-5: Number of concentration values used to estimate nitrate-N loads per data set.   TriOS ten-
minute concentration values were multiplied by the corresponding instantaneous flow value, TriOS hourly 
average values were multiplied by the corresponding hourly averaged flow value, and all other data sets were 
associated with an hourly average flow value using the LOADEST modelling suite.  Selection of data for the 
period 10:00-11:00 each day was arbitrary – it was intended to replicate a daily grab sample. 

Data set Derivation of data Load calculation method 
Number of 

concentration 
records 

Grab sample Data used as hourly average on day 
collected (if multiple samples collected 
within an hour), otherwise at time 
collected, on day of collection 

Regression model using 
LOADEST suite, grab sample 
estimate and hourly average 
discharge values 

313 

TriOS instantaneous 
data (10 min 
frequency) 

Data used at frequency collected Product of concentration and 
flow at time of concentration 
measurement 

151,541 

TriOS hourly average 
data 

Hourly average value calculated Product of hourly average 
concentration and hourly 
average flow  

26,345 

TriOS daily  Hourly average for period 10:00-11:00 
each day used 

Regression model using 
LOADEST suite, daily TriOS 
estimate and hourly average 
discharge values 

1,065 

TriOS weekly  Hourly average for period 10:00-11:00 
on 1st, 8th, 15th, 22nd and 28th day of 
each month used 

Regression model using 
LOADEST suite, weekly TriOS 
estimate and hourly average 
discharge values 

173 

TriOS monthly  Hourly average for period 10:00-11:00 
on 10th day of each month used 

Regression model using 
LOADEST suite, monthly TriOS 
estimate and hourly average 
discharge values 

34 

 

Regression models were used to generate a time series of estimates via the LOADEST modelling 

package.  Details of one of the model outputs are included in Appendix D.  Additional information is 

also provided for this model output, and load estimates at various time scales, in Appendix D. 

A. Time series plots:      Figure E-1 - Figure E-2 

B. Bar graphs of average load over the entire  

assessment period, seasonal and monthly load  

estimates, with associated error estimates:  Figure E-3 - Figure E-7 

C. Tables of summary statistics:     Table E-1 - Table E-5 

The model results are plotted and tabulated with load estimates derived from the ten-minute TriOS 

data, or hourly average TriOS data.  The hourly average and instantaneous TriOS estimates provide 

very similar nitrate-N load estimates for all time scales (entire period, seasonal and monthly).  As a 

consequence, the hourly average TriOS data were used to create a series of subsets of data for 

regression modelling.  The principal reason for this was to determine and where possible, quantify 
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the benefits derived from, more intensive measurement of stream concentrations when determining 

contaminant load estimates.   

a) Data gaps and using regression modelling to fill these 

In Figure 7-14 the grab sample instantaneous load, TriOS sensor load and the load predicted using a 

regression model based on grab sample concentrations and flow are shown together.  The two 

figures indicate that the regression model provides nitrate-N load estimates that match both grab 

sample and TriOS estimated loads.  The figure on the left also indicates how a regression model may 

be used to estimate loads for the periods of missing TriOS concentration record. 

  

Figure 7-14: Comparison of nitrate-N load estimates derived from grab samples (instantaneous load), grab 
samples (as LOADEST model estimate) and TriOS sensor concentrations and discharge. The figure on the left 
includes a period containing a minor flood event and periods of missing TriOS data. The figure on the right 
includes a major flood event and several smaller flood events.  

 

Figure 7-15 compares the results from various load estimation techniques for the period January-

February 2018.  A log10 scale is used to better represent the data over the full flux estimate range.  

The regression model provides reasonable estimates of elevated and very low loads, but cannot 

easily define valleys that occur on “shoulders” or periods of persistently elevated loads (e.g., as occur 

during the second half of February).  The model is also unable to indicate the diurnal fluctuations in 

nitrate-N load that occurred during January 2018.  These diurnal fluctuations arise from biological 

processes occurring in the river (e.g., nutrient uptake by periphyton and vascular plants, and loss of 

nitrate-N following denitrification).  The latter processes could potentially be included in a more 

sophisticated process-based model if additional data were available.   
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Figure 7-15: Comparison of nitrate-N load estimates derived from grab samples (instantaneous load), grab 
samples (as LOADEST model estimate) and TriOS sensor concentrations and discharge. The figure includes a 
major flood event and several smaller flood events.  

Earlier the question was asked “How frequently should TriOS sensor measurements be recorded?”  

Figure 7-15 indicates that if detailed information regarding short duration, biological processes is 

required, high frequency sensor measurement is necessary.  From the Kakanui River case study 

(Section 6.1.4), hourly frequency appears adequate to characterise most short-term events in rivers 

of this magnitude.  Figure 7-15 also indicates that a relatively simple regression model using 

relatively few grab sample estimates is able to provide similar load estimates to those derived from 

high frequency measurements.   

(b) Comparison of various model outputs 

The results of the six estimation techniques outlined in Table 7-5 are summarised in Figure 7-16 and 

Figure 7-18 for the entire monitoring period, and at seasonal and monthly scales, respectively.  

Monthly data are summarised graphically in Figure E-1 through Figure E-7, and the summary 

statistics for loads estimated using each estimation technique are provided in Table E-1 through 

Table E-5 in Appendix E.  In the discussion that follows it is assumed that the most accurate estimate 

of load is provided by the ten-minute TriOS data.  Reasons supporting this assumption include: 

▪ the very large number of concentration estimates that can represent all flow, time of 

day and seasonal conditions, and 

▪ the large number of “correct” estimates are able to compensate for the relatively few 

incorrect values (i.e., produced as spikes or periods of missing data). 
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Data are expressed in terms of difference from the TriOS instantaneous estimate in Figure 7-19 

(entire estimation period) and Figure 7-20 (seasonal and monthly periods). 

The TriOS instantaneous and hourly average load estimates are almost identical at entire data set 

and seasonal scales.  The error estimates are also very similar.   

The grab sample/AMLE regression model provide the largest load estimates for the entire 

assessment period.  The seasonal estimates (Figure 8-17) indicate that most of the over-estimation 

arises in the winter season, and in a few months in the winter-spring period.  The confidence 

intervals are similar to those of the TriOS weekly estimates, and smaller than those of the TriOS 

monthly subsample estimates. 

The TriOS monthly subsample provide the lowest average load estimates for the entire monitoring 

period – this under estimation occurs primarily during the autumn and winter periods.  The model 

over-estimates the average load slightly relative to the daily and weekly subsamples of TriOS data, 

but provides largest estimates of loads for the summer season.  In all periods, the error associated 

with the monthly subsample estimate is largest. 

Several of the larger discrepancies between grab sample estimates and TriOS ten-minute nitrate-N 

load estimates relate to missing data.  Table 7-6 lists months where more than 144 records are 

missing – the large difference between estimates in the July and August 2016 period probably relate 

to these periods of missing data.   The difference between nitrate-N load estimates relative to TriOS 

sensor instantaneous concentrations for each month in the assessment period are shown in Figure 

7-19, where these differences are shown as a proportion. 

 

Figure 7-16: Comparison of nitrate-N load estimates derived from grab samples (as LOADEST AMLE model 
estimate) and TriOS sensor concentrations and discharge for the full monitoring period, April 2015-March 
2018.  The blue and red symbols indicate the 95th% lower and upper confidence intervals, respectively.  The 
TriOS estimates are derived from instantaneous measurements, monthly and weekly subsamples. The daily 
TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00.  The 
weekly TriOS samples represent the hourly average concentration measured each day between 10:00 and 
11:00 on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each month.  The monthly TriOS samples 
represent the hourly average concentration measured each day between 10:00 and 11:00 on the 10th day of 
each month.   
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Figure 7-17: Comparison of nitrate-N load estimates derived from grab samples (as LOADEST AMLE model estimate) and TriOS sensor concentrations and discharge for the full 
monitoring period, April 2015-March 2018, expressed as seasonal values. The blue and red symbols indicate the 95th% lower and upper confidence intervals, respectively. 
Autumn= March- May, Winter= June- August, Spring= September - November, Summer = December- February.  The TriOS estimates are derived from instantaneous 
measurements, monthly and weekly subsamples. The daily TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00.  The weekly 
TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00 on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each 
month.  The monthly TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00 on the 10th day of each month.   
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Figure 7-18: Comparison of nitrate-N load estimates derived from grab samples (as LOADEST AMLE model estimate) and TriOS sensor concentrations and discharge for the full 
monitoring period, April 2015-March 2018, expressed as monthly values.  The TriOS estimates are derived from instantaneous measurements, monthly and weekly subsamples. 
The daily TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00.  The weekly TriOS samples represent the hourly average 
concentration measured each day between 10:00 and 11:00 on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each month.  The monthly TriOS samples represent the 
hourly average concentration measured each day between 10:00 and 11:00 on the 10th day of each month.   
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Figure 7-19: Difference between nitrate-N load estimates relative to TriOS sensor instantaneous concentrations for each month in the assessment period expressed as 
percent difference. The dashed lines indicate ±50%.  The TriOS estimates are derived from instantaneous measurements, monthly, weekly and daily subsamples. The daily TriOS 
samples represent the hourly average concentration measured each day between 10:00 and 11:00.  The weekly TriOS samples represent the hourly average concentration 
measured each day between 10:00 and 11:00 on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each month.  The monthly TriOS samples represent the hourly average 
concentration measured each day between 10:00 and 11:00 on the 10th day of each month.    
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Figure 7-20: Difference between nitrate-N load estimates relative to TriOS sensor instantaneous 
concentrations for the entire monitoring period (top) and by season (bottom) expressed as percent 
difference. The dashed lines indicate ±5% in the upper figure and ±10% in the lower figure.  The TriOS 
estimates are derived from instantaneous measurements, monthly, weekly and daily subsamples. The daily 
TriOS samples represent the hourly average concentration measured each day between 10:00 and 11:00.  The 
weekly TriOS samples represent the hourly average concentration measured each day between 10:00 and 
11:00 on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each month.  The monthly TriOS samples 
represent the hourly average concentration measured each day between 10:00 and 11:00 on the 10th day of 
each month.   

Table 7-6: Number of missing 10-minute TriOS sensor records per month.  Only months where 144 values 
or more were missing (representing a 24-hour period or more) have been selected. 

Month No missing values Days of missing record 

Apr-15 467 3.2 

Aug-15 362 2.5 

Oct-15 276 1.9 

Jul-16 1,126 7.8 

Aug-16 2,675 18.5 

Apr-17 613 4.2 

May-17 767 5.3 

Mar-18 225 1.5 

Apr-18 459 3.1 
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Another reason for the discrepancy between sensor-derived load estimates and estimates derived 

from regression models is illustrated in Figure 7-21, where 24 grab samples cover the four day period 

of a flood event.  There is good general correspondence between the two estimation methods, with 

three areas of difference worth noting: 

▪ the grab samples do not capture the steep increase in nitrate-N concentration on the 

rising limb of the hydrograph 

▪ the TriOS sensor possibly overestimates nitrate-N concentrations on the rising limb, 

and 

▪ the TriOS sensor possibly underestimates the nitrate-N concentration under peak flow 

conditions. 

None of these areas of difference are cause for concern, but they do confirm the requirement to fully 

understand the spectral absorbance technique, particularly the effect of interferences and the 

efficacy of the algorithms used to correct for these interferences.  Specific investigation would be 

required to confirm whether the potential effects noted above require specific correction. 

 

Figure 7-21: Comparison of grab sample and TriOS instantaneous nitrate-N concentrations for a flood event 

in June 2017.  
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8 Case study 3: NIWA Mataura River data 
As outlined in Section 5, NIWA runs two TriOS OPUS nitrate-N sensors on the Mataura River at 

Mataura Island in Southland. The Mataura River is much larger than the Kakanui and Aparima rivers 

and NIWA has been using two monitoring approaches in parallel.  The deployment of both 

instruments is illustrated in Appendix I:  

▪ an in-river deployment, with one TriOS sensor installed in the river channel (protected 

from physical damage using suitable sheathing), and 

▪ an out-of-channel deployment, where river water is pumped to a TriOS sensor installed 

in an enclosure on the bank, with measurement made in flow chamber sleeve at 

atmospheric pressure.   

NIWA operates this site as a benchmark site, to trial new or emerging techniques.  The dual sensor 

deployment strategy allows the relative benefits and weaknesses of in-river vs. out of channel 

measurement to be compared. 

8.1 Time series data 

Time series data for the two TriOS sensors are shown in Figure 8-1 through Figure 8-3 for various 

timescales.  General agreement between the grab sample concentrations and the bulk of the 

measurements from either the TriOS River or TriOS Pumped sensors is evident.   However, a 

considerable number of TriOS River sensor values are substantially greater than those of the grab 

samples.  As Figure 8-1 indicates, values less than zero are also reported.  The grab samples indicate 

that nitrate-N concentrations are typically within a range from approximately 0.1 to 3 mg/L 

(discussed further below). 

 

Figure 8-1: Comparison of grab sample and TriOS sensor nitrate-N concentrations, from June 2016 to 

March 2018 (full available record).  
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Figure 8-2: Comparison of grab sample and TriOS sensor nitrate-N concentrations, June 2017.  

 

Figure 8-3: Comparison of grab sample and TriOS sensor nitrate-N concentrations, 18-25 June 2017.  
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Estimated concentrations <10 mg/L Estimated concentrations >10 mg/L 

  

Figure 8-4: Relationship between TriOS River instantaneous nitrate-N concentrations and discharge (flow) 

for two ranges of concentration values.The data in the righthand plot are all considered erroneous. 

8.2 Concentration characteristics 

The summary statistics in Table 8-1 indicate that the wide range of values observed in the both the 

TriOS River and TriOS Pump data influence the median and mean values, even when apparent outlier 

data are excluded.  If an identified management target for the Mataura River was “median nitrate-N 

concentrations are not to exceed 1 mg/L”, either of the subsamples of TriOS sensor data sets in Table 

8-1 would indicate compliance, whereas the grab samples would not.   

Table 8-1: Summary statistics for nitrate-N measurements, Mataura River.  Data were selected from the 
entire monitoring records where nitrate-N concentrations were > 0 mg/L and < 3 mg/L. The box-and-whisker 
plot represent the selected data only. 
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Minimum 0.66 0.01 0.01 

Maximum 2.11 2.89 2.2 

Median 1.096 0.95 0.89 

Mean 1.206 1.009 0.934 

SE of Mean 0.055 0.001 0.001 

Mode - 0.86 0.77 

95.0% LCL of Mean 1.096 1.008 0.933 

95.0% UCL of Mean 1.317 1.011 0.936 

Percentiles: 
   

10th  0.845 0.74 0.62 
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Figure 8-5 illustrates the relationship between grab sample concentration and discharge in the 

Mataura River for the period 2012-2017 inclusive.  These data were sourced from the LAWA website 

for the nearby ES monitoring site “Mataura at Seaward Downs”.  The graph on the right presents 

data for the 2016-2018 period for which TriOS data exist.  The grab sample concentration data 

represent the range of flow conditions and concentration range indicated by the longer data set 

reasonably well.  The longer-term data set indicate that nitrate-N concentrations are unlikely to be 

less than 0.2 mg/L or greater than 2.5 mg/L. 

  

Figure 8-5: Relationship between grab sample nitrate-N concentration and discharge (flow).  Note x-axis 

has log10 scale. 

The relationship between the two TriOS data sets sharing grab sample data is shown in Figure 8-6. 

Only data points that have paired grab samples are included in the figure. 

 

 

 
Figure 8-6: Comparison of nitrate-N concentrations from pumped vs river TriOS sensors.  The figure on the 

left includes an Ordinary Least Squares (OLS) and Least Absolute Deviation model fit, and the figure on the right 

indicates three identified outliers. 
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With the three outliers included, the model explains less than half the variance (R2 = 0.435) – with 

the three outliers removed, the R2 increase to 0.98.  The residuals are reasonably evenly distributed 

across the concentration range, but indicate positive bias in the river measurements.  The slope of 

the line is ~1 (0.971), indicating that the in-river TriOS sensor slightly underestimates nitrate-N 

concentration relative to the TriOS sensor installed out of the river channel. 

The relationship between TriOS sensor and grab sample nitrate-N concentrations is shown in Figure 

8-7.  A strong correlation exists for the pumped TriOS estimates and the grab sample concentrations 

(R2 = 0.95); the relationship between the in-river TriOS sensor and the grab sample is relatively weak 

(R2 = 0.43), but increases to 0.84 if the three outlies are removed. 

 

Figure 8-7: Comparison of TriOS sensor with grab sample nitrate-N concentrations.  Three outlier values 

previously identified are shown as crosses.  The 1:1 line is indicated by the blue line. 
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between sensor response and grab sample concentration is evident (R2 = 0.35), suggesting an 

increasing difference between sensor estimates and grab sample concentration.  There was no 

obvious explanation for this behaviour, although there was a weak positive relationship with river 

discharge, and a slightly stronger but negative relationship with suspended sediment concentrations.  
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variables, indicating that they did not affect one or other measurement method substantially. 
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Figure 8-8: Difference between TriOS sensor and grab sample nitrate-N concentrations according to sensor 

location.The horizontal dashed lines indicate ±0.2 mg/L. 

 

Figure 8-9 presents three subsets of data selected to demonstrate the effect that outlier data may 

have on determining water quality characteristics.  The three subsets include all available grab 

sample concentrations as TriOS sensor estimates are excluded because they are either missing or fall 

outside of the range defined by the long-term concentration record.  Taking into account that the 

confidence intervals overlap, the TriOS River values underestimate the mean concentration, and 

failure to exclude outlier data may lead to incorrect management decisions.  The median 

concentration values derived from these subsets are summarised in Table 8-2, which indicates that 

compliance with the fictional “management target” may be biased according to the data selection 

method. 

 

Figure 8-9: Grab sample and TriOS sensor instantaneous nitrate-N concentrations for three subsets of 

data.  The red dots indicate the 95th% lower and upper confidence intervals.  The criteria for data selection are 

summarised in the caption to Table 8-2. 
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Table 8-2: Median nitrate-N concentrations derived from subsets of data.  One = all TriOS values 
corresponding to a grab sample (includes missing values), Two = all TriOS data corresponding to a grab sample 
where both a TriOS River and TriOS Pump value exist, Three = all TriOS data corresponding to a grab sample 
where both a TriOS River and TriOS Pump value exists and where TriOS River and TriOS Pump estimates lie 
within the range 0.2 to 2.5 mg/L.  Values in parentheses indicate number of results in each subset for each 
measurement technique. 

Selected subset  
of data 

Median nitrate-N conc. (mg/L) 

Grab nitrate-N TriOS River TriOS Pump 

One  1.096 (45) 1.17 (45) 1.13 (40) 

Two 1.097 (35) 0.895 (35) 1.23 (35) 

Three 1.17 (14) 0.985 (14) 1.23 (14) 

 

The above example highlights the importance of collecting high quality data, and for having sound 

methods in place for excluding outlier data prior to undertaking a detailed assessment.  ”More is not 

necessarily better” if poor quality data are not excluded.  

Various statistical methods exist to evaluate the quality of data following various data screening, 

subsampling or replacement actions.  Two examples are provided in Appendix F, where two 

regression techniques are used to assess the relationship between the TriOS river data and the TriOS 

pumped data sets.  In the first example, the entire data set is used, and the model identifies and 

omits outlier data.  In the second example, an a priori selection is applied, and the number of 

spurious data are reduced before the assessment occurs.  Although the rigour of the relationship 

between the two data sets is improved, there is obviously high autocorrelation in both sets of data.  

This may have other unwanted effects when undertaking regression analysis.  In this exercise that 

was not an important consideration, but it does highlight another effect of collecting “too much” 

data.  The volume of available data makes manipulation and analysis cumbersome, and an excessive 

volume of data may hide – rather than reveal – important information. 

8.3 Sampling frequency 

The two Mataura River TriOS sensors collected data at a five-minute frequency over the period 

March 2016 to March 2018.  More than 150,000 and 200,00 data exist for the TriOS pumped and 

river sensors, respectively. Figure 8-10 indicates that there is little benefit in collecting data at higher 

than daily frequency for general resource management purposes, and probably for most modelling 

applications.  Should a daily value be required, it would however be prudent to collect several 

measurements and report the median (or mean) to minimise potential for bias arising from transient 

spikes. 

Should highly precise data be required over short timescales, then as demonstrated in Figure 8-11 it 

might be necessary to collect high frequency data.  Provided large transient spikes are removed from 

these data, it is possible to estimate variability at sub-hourly intervals with high precision and 

accuracy.  It would require considerable effort to ensure that this level of precision and accuracy is 

maintained throughout a long duration sensor deployment.  
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A 

 

B 

Figure 8-10: Time series of TriOS pump sensor nitrate-N concentrations for three subsets of data.  The red 
line represents five-minute data, the green line represents one-hour data (the 30-minute value of each hour) 
and the black dots represent a one-hour sample of five minute TriOS data (the 12 values measured between 
13:00 – 14:00).  The magenta dot is a grab sample concentration value. 

 

  

Figure 8-11: One-day time series of TriOS pump sensor nitrate-N concentrations and grab sample result, 
showing standard deviations.  The red line represents five-minute data, the grey lines represents the lower 

and upper standard deviation (calculated for that day).  The gaps in the red line indicate missing data.  The 

magenta dot and black triangles represent a grab sample and the standard deviation for all grab samples 
available. 
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9 Time-series data management  
The increasing use of in-situ sensors to continuously measure different water quality properties in 

rivers brings with it a requirement for robust data processing and management procedures. While 

regional councils are very experienced with hydrological data, hyperspectral water quality brings 

different challenges and may require different software (and procedures) to handle the multiple data 

files and greater number of data fields.  Several NEMS exist for continuous water quality data, 

including dissolved oxygen, temperature and turbidity. These Standards should be consulted as an 

initial reference to guide some aspects of nitrate-N data processing and management.  

In this section, the data derived from two nitrate-N sensors in use in New Zealand – the TriOS OPUS 

and Specta::lyser – are described.  Current NIWA data storage practices are also outlined. 

9.1 Data output files 

9.1.1 Spectra::lyser instrument 

Two output files are generated: 

1. A PAR (parameter) file, which is a time-series data set of derived water quality variables 

(“concentration data”), and quality control information, including: 

− a date-time field (in non-standard format – yyyy.mm.dd hh:mm:ss) 

− an instrument status value and variable-specific status fields, and 

− depending on the capability of the specific instrument, a range of concentration 

values, including “Nitrate-N”, “TOC”, “DOC”14, a turbidity estimate, and several 

status and Spectral Absorption Coefficient values (e.g., SAC254)15.  

2. A FP (fingerprint file), which is a time series of absorbance values for a series of spectral 

bandwidths. 

A date-time field identical to that of the PAR file, and up to 221 spectral slices (2.5 nm bandwidth), 

ranging from 200 nm to 750 nm. A file holding two-minute frequency data collected for 24 hours is 

1.1 MB in size. The FP file would be used for quality assurance purposes, to alter the standard 

calibration, to develop generate relationships for other variables not included in the standard suite of 

parameters, or to develop algorithms that improve nitrate-N quantification in different sample 

matrices .  

For the Spectra::lyser devices in use at NIWA, 12 fields are included in the data files.  A file containing 

24 hours’ of data collected at two minute frequency is 63 kB in size. These are the data that would 

generally be used for water quality assessment and reporting. 

9.1.2 TriOS OPUS instrument 

The TriOS OPUS instrument produces multiple output files; for the instruments in use at NIWA, these 

include: 

▪ A “water quality” data file, comprising 15 fields, including: 

 
14 TOC = total organic carbon, DOC = dissolved organic carbon 
15 These data provide information regarding likely efficacy of UV irradiation for sterilising potable or treated wastewater  
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− A date-time field, a descriptor field, and several comment fields, as well as a 

quality assessment metric (these are the data that would generally be used for 

water quality assessment and reporting). 

− Specific water quality variable concentration data, including “nitrate-N, nitrite-N, 

DOC, total suspended sediment”, three specific absorbance measurements, and 

SAC254, 

▪ raw light and dark absorption measurements (190 – 393 nm, 0.8 nm bandwidth) – 277 

fields, and 

▪ a calibrated set of absorption measurements, creating 277 spectral slices (200 nm - 

360 nm, 0.8 nm bandwidth), each of which becomes a discrete data field.   

Each file contains instrument-specific information regarding instrument and lamp performance, and 

calibration and quality assurance data, including statistical summaries of key performance metrics.  

The raw data files contain three averaged readings at each time step, used to create the water 

quality variable file.  The 24-hour duration raw and calibrated spectral files range from 1.6 MB to 3.7 

MB in size, while the “water quality” data file is 153 kB in size.  

9.2 Data storage and exchange 

9.2.1 Spectra::lyser data  

Currently at NIWA the FP and PAR files derived from the Spectra::lyser instruments are retrieved 

from the instrument each day, and both are stored on a secure server.  The relatively small size of 

these files makes transfer over the cellular network possible at reasonable cost.  Data retrieval is 

controlled by bespoke software, which compares available data against data on the instrument, and 

retrieves new data only each day.  If the data retrieval fails on one day, the process is retried several 

times, and then suspended until the next day.  Capacity on the instrument and local storage allows 

several days of information to be stored, overwriting the oldest data first.  On retrieval, the data are 

stored on a secure network server as a series of discrete files.   

Data may be used “as-is” (using the standard PAR file), or the information in the standard PAR file 

may be revised if necessary using the FP file and alternate calibration files; the proprietary software 

supplied by the manufacturer may be used for this purpose.  Alternately, “data mining” or modelling 

procedures involving discrete calibration data may be used with the FP data to generate alternate 

data files or new relationships for other variables.  To enable immediate and post-collection 

processing, both sets of data (the PAR and FP files) must be stored.   

The Spectra::lyser instruments are currently used for specific water quality investigations, which tend 

to be of short duration (days to weeks to months).  The data are currently not stored on a specific 

database or time-series manager as a compiled data set.  As a consequence, the raw data derived 

from the instrument is stored on a server (if retrieved remotely), as well as in specific project drives.  

When cell phone connectivity is poor, it is necessary to store the data on-site for later retrieval.  The 

data must then be stored to the server as well as on the relevant project “Raw Data” folder. 

Before the data may be analysed as a complete data set or part of a larger data set, it is necessary to 

join the individual data files to create a single file.  At NIWA, scripts have been written in Python 

programming language to allow multiple files to be joined in a batch process.  The Python script also 

checks the data file, strips out header information and other extraneous data within the data file.  
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Currently the output file is in CSV format, facilitating subsequent use in a wide range of software, or 

storage in an appropriate database or time-series manager.  The Python script could also be used 

generate specific file formats.  Software other than Python may also be used for data processing.  

Storage of the data using MS Access was recently explored at NIWA.   

9.2.2 TriOS data 

Two TriOS OPUS sensors are currently deployed at NIWA’s Mataura Island site on the Mataura River 

and a further TriOS sensor is in place on the Hurunui River.  For both sites, only data for the derived 

water quality variables are currently retrieved via a NEON logger interface.  These data are secured 

on the NEON telemetry server, but are not currently stored along with the hydrological data on the 

AQUARIUS time-series manager.  Flow and continuous water quality data may however be retrieved 

directly from the NEON server in csv file format. 

9.2.3 Which data should be stored? 

The answer to this question is determined by the intended data use.   

▪ If the data are to be as-is, using the concentration data derived from the standard 

algorithms included with the instruments and software, it will be adequate to store 

just the discrete derived water quality concentration or unit values.  The data should 

probably be regarded as of unknown data quality until compared against grab sample 

calibration data, at which time a quality code may be applied.   

▪ If the data are to be subject to detailed analysis and additional calibration applied, or 

used as input to more detailed data mining or modelling, then store the hyperspectral 

data as well.  This will considerably increase the volume of data requiring storage and 

management, although as indicated in the three case studies, the measurement 

frequency may be reduced substantially without loss of information. 

▪ Should a user wish to undertake specific investigation in a ‘problem’ river, or a short 

duration trial, the full data suite should be collected and stored (hyperspectral data as 

well as the concentration of the derived water quality variable).  The hyperspectral 

data could then be used to refine the data, recalibrate the sensor response, or derive 

measurements for other variables for which standard output does not exist.   

▪ It may be necessary to consider existing practice regarding grab sample collection – 

the time of collection must match that of a sensor measurement if the data are to be 

directly compared.  Several options exist: 

− the time of collection is standardised so that the recorded value will match a value 

in the high frequency data record (preferred), or 

− the sample collection time is adjusted during the data analysis process. 

▪ Manual, post-collection collection time adjustment is tedious and a potential source of 

error, so unless it is possible to round the sample collection time during retrieval from 

the time series manager, it is advisable to standardise the collection time.  This would 

be consistent with the draft (NEMS 2017) which recommends “the timing of field 
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measurements and sample collection shall be recorded as a single visit time to the 

nearest 5 minutes….”, expressed as NZ standard time.16 

The storage and future use of data should be considered when designing monitoring programmes.  

Presumably the hyperspectral analysers are primarily deployed to measure nitrate-N concentrations 

at high frequency.  It would be better to ensure that the quality of data derived directly from the 

sensor is as high as possible at the time of collection, rather than relying on extensive and complex 

post-measurement manipulation to “improve” the quality of the data. 

9.2.4 Managing time series data 

The Hilltop software suite, which currently has widespread use across regional councils, is able to 

accommodate high frequency water quality data.  The database has facility to include comments and 

quality description fields.  Data may also be visualised and summarised within the software.   

It is important to take care with date and time fields when exporting databases to other software for 

analysis to ensure that discontinuities arising from leap years, and apparent date and time values 

(ones that may appear to be date(s) and time(s), but are actually text or non-date/time numbers) 

have not arisen. 

  

 
16 http://www.nems.org.nz/assets/Documents/NEMS-60/NEMS-Discrete-WQ-Part-2-Rivers.pdf page xix and Section 2.6.2 page 15. 

http://www.nems.org.nz/assets/Documents/NEMS-60/NEMS-Discrete-WQ-Part-2-Rivers.pdf
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10 Summary 
This report has touched on uses of high frequency nitrate-N monitoring data for purposes such as 

water quality characterisation, trend detection and quantification, load estimation, and to a lesser 

extent, better understanding of ecological processes and nutrient cycling.  Aspects not directly 

covered in this report include spatial surveys, which could be used to assess the efficacy of mitigation 

strategies.  The detailed assessment of high frequency nitrate-N data reported here indicate how 

these data may be used.  Whether specific councils require this type of information is a decision that 

they will have to make and highlights the importance of identifying the purpose of monitoring at the 

outset.   

The modelling exercises have demonstrated that reasonable estimates of nitrate loads are available 

using grab samples derived from conventional monitoring programmes.  The model estimates are 

enhanced by collection of data during several hydrological events.  While it might be assumed that 

the additional data required to characterise flow-concentration relationships during flood events 

may be obtained from hyperspectral data, several case study examples demonstrate that the quality 

of hyperspectral data may be degraded during floods because of interferences.  It is important to 

support the collection of hyperspectral data using conventional grab samples, particularly when the 

grab samples are collected on a flow proportional basis.  Results from these samples may also be 

used to validate the hyperspectral data and assure the quality of the data. 

Having decided that high frequency nitrate data are required, the requirements for high quality data 

need to be satisfied.  There is no point in collecting data where spectral or optical interferences, 

physical obstruction of the light path and other factors downgrade much of the data.  It might be 

tempting to rely on the large volume of data to overcome the gaps in information arising from 

intermittent loss of data.  This strategy may be flawed because loss of data may occur, particularly 

during those periods when the information is required (e.g., during flood events), and necessitates 

collection of larger volumes of data to ensure redundancy.  Once again, the decision to collect 

hyperspectral data needs to be based on information requirements, and be supported by investment 

in equipment management, maintenance, calibration and validation, data processing and 

management. 

Several documents exist to guide councils in best practice operation of hyperspectral analysers.  

Information from several of these well-established, tried and tested procedures have been 

summarised.  We recommend that the principles and steps identified in Sections 3 and 4 be used to 

guide individual councils until such time that procedures for operation of hyperspectral analysers 

have been documented.  The process used in creating the various NEMS are suggested as 

appropriate for this purpose.  This will ensure that the experience and expertise of chemists, 

hydrologists, water quality scientists and monitoring officers are adequately reflected in the guidance 

document. 

Deployment of high frequency, hyperspectral water quality analysers creates a complex set of 

measurement and operational challenges.  These challenges relate to the basic measurement 

principle and the relationship between sample matrix, pathlength and nitrate-N concentrations, 

coupled with the challenges arising from deployment of any measurement device in the harsh and 

changeable riverine environment.  Pathlength determines sensitivity, but also limits measurement 

accuracy and sensitivity to interferences.  In some cases, achieving sensitivity over a wide 

concentration range may require use of two instruments, with each optimised for part of the overall 

concentration range. 
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This report has demonstrated that UV-visible spectroscopy is a well-established procedure for 

measuring nitrate-N in water.  The limitations of the procedure have also been well-documented.  

Coupling miniaturised spectrophotometers with data algorithms has overcome some of these 

challenges for specific classes of water, allowing routine unattended collection of in-situ data. 

Routine use of these instruments over several years by several agencies has provided information 

suitable for development of a best practice guidance document or a standard operating procedure.  

Factors likely to influence performance include interferences, the algorithms used to convert spectral 

data into nitrate concentration values, the trade-off between pathlength, accuracy and detection 

limit, and evaluation of instrument precision and accuracy. Quality assurance requirements include 

the local calibration (optimising calibration to account for specific water matrix effects), use of 

calibration standards, and the requirement for routine inspection and cleaning. Data management 

and handling procedures are also important.  The large volume of data potentially derived from 

hyperspectral instruments provide several challenges that may not be encountered when dealing 

with hydrometric data, or discrete water quality data.   

The logical next step is development of a formal procedures document, most likely in the form of a 

NEMS.  The information in this document will assist in this process. 

Several case studies presented covering the Kakanui, Aparima and Mataura rivers described data 

handling procedures in detail, and the effects of several routine operation procedures (e.g., cleaning 

events, location of deployment within-channel or adjacent to channel), and the effects of transient 

spikes.  Specific uses of continuous data presented, included: 

▪ Evaluating the relationship between discrete grab sample and continuous data. 

▪ Understanding flow and concentration dynamics, and how this knowledge may be 

used to identify contaminant mobilisation processes within catchments. 

▪ Understanding short-term variability and potential drivers of this variability. 

▪ Trend assessment. 

▪ Nitrate-N load estimation. 

A recurring theme is measurement frequency.  In several case study examples, subsets of data 

derived from five and ten- minute frequency data were generated, and these were used to repeat 

several assessments, including load estimation and trend assessment.  In some cases, comparison of 

the results derived from the subsets help identify “suitable” measurement frequency.  It is apparent 

that unless very high frequency information requirements exist, it is difficult to justify measurement 

in larger rivers at frequencies greater than one hour.  The case study results suggest that daily 

measurements appear adequate for most purposes. 

Implementation of continuous nitrate-N sensors will benefit from follow up work.  For example, 

research within NIWA is exploring the interplay between suspended sediment, dissolved organic 

material and measurement accuracy.  This is being undertaken at both laboratory and field-scale, and 

is likely to contribute further to the development of standard procedures for deployment and 

operation, and in data interpretation and use. 
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Appendix A Kakanui River - Gemmels Crossing Site 
Relationship between grab and continuous measurement for the Kakanui at Gemmels 
Crossing Bridge site 
 
▼Robust Regression 
 

 
107 case(s) deleted due to missing data. 

 
Dependent Variable TriOS Nitrate-N 

conc. (mg/L) 

No. of cases 20 

No. of Regressors 1 

 
Least Trimmed Squares (LTS) Regression 

 
Size of Subset 20 

Number of C-Steps 2 

Maximum Number of Replications 500 

Number of Solutions for Final C-Steps 10 

Intercept Adjustment NO 

Number of Squared Residuals Minimized (h) 12 

Breakdown Value 40% 

 
LTS Parameter Estimates 

Effect Coefficient 

CONSTANT 0.040 

NNN conc. (mg/L) 0.857 

 
Scale Estimates 

Scale (LTS) 0.003 

Scale (Weighted) 0.004 

 
Cutoff Point 3.000 

Number of Outliers Detected 3 

 
Robust R-square 0.997 

 
Ordinary Least Squares (OLS) Regression for Outlier Free Data  

 
Multiple R 0.997 

Squared Multiple R 0.995 

Adjusted Squared Multiple R 0.994 

Standard Error 0.005 

 

OLS Parameter Estimates 

Effect Coefficient Standard Error 95.00% Confidence Interval 

Lower Upper 

CONSTANT 0.038 0.002 0.034 0.043 

NNN conc. (mg/L) 0.869 0.016 0.834 0.904 
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Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 0.063 1 0.063 2820.742 0.000 

Residual 0.000 15 0.000     

 
Durbin-Watson D Statistic 1.936 

First Order Autocorrelation -0.051 

 

 
 

 
 
  



 

114 Review of high frequency water quality data 

 

 
Data for the following results were selected according to 
SELECT TRIOS_NITRATE>0 
 

 
Eigenvalues of Unit Scaled 
X'X 
1 2 

1.832 0.168 

 
Condition 
Indices 
1 2 

1.000 3.305 

 
Variance Proportions 

  1 2 

CONSTANT 0.084 0.916 

NNN conc. (mg/L) 0.084 0.916 

 
Dependent Variable TriOS Nitrate-N 

conc. (mg/L) 

N 20 

Multiple R 0.980 

Squared Multiple R 0.961 

Adjusted Squared Multiple R 0.958 

Standard Error of Estimate 0.012 

 
Regression Coefficients B = (X'X)-1X'Y 

Effect Coefficient Standard Error Std. 
Coefficient 

Tolerance t p-Value 

CONSTANT 0.045 0.005 0.000 . 9.213 0.000 

NNN conc. (mg/L) 0.845 0.040 0.980 1.000 20.959 0.000 

 
Confidence Interval for Regression Coefficients 

Effect Coefficient 95.0% Confidence Interval VIF 

Lower Upper 

CONSTANT 0.045 0.035 0.055 . 

NNN conc. (mg/L) 0.845 0.760 0.930 1.000 

 
Correlation Matrix of Regression 
Coefficients 
  CONSTANT NNN conc. 

(mg/L) 

CONSTANT 1.000   

NNN conc. (mg/L) -0.832 1.000 

 
Analysis of Variance 

Source Type III SS df Mean Squares F-Ratio p-Value 

Regression 0.064 1 0.064 439.265 0.000 

Residual 0.003 18 0.000     

 
WARNING  
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Case 110 is an Outlier (Studentized Residual : 5.140) 

 
Durbin-Watson D-Statistic 2.671 

First Order Autocorrelation -0.358 

 
Information Criteria 

AIC -116.081 

AIC (Corrected) -114.581 

Schwarz's BIC -113.094 
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Appendix B Explanation of box and whisker plot conventions 
 
It should be noted that these conventions apply to box and whisker plots generated by the Systat 
software package - they may be quite different to plots, symbols and names applied to elements in 
graphs generated by other software, particularly with regard to the whiskers, and “outliers”. 
 

 



 

118 Review of high frequency water quality data 

 

Appendix C Kakanui River - McCones site 
Relationship between grab and continuous concentration measurement  
 
Number of Variables : 21 

Number of Cases : 13832 

 
SYSTAT Rectangular file O:\ELF18203\Working\From 
ORC\Neale\McCones\Processed\Kakanui_McCones_GrabWQ_TriOS_G_InstLoad_Take2.syz,  
Created data file Wed Jun 27 23:02:36 2018 containing variables: 
 

YYYYMMDDHH HH$ YYYYMMDD$ HHMM$ FLOW_CFS FLOW_LS 

NITRATE_TRIOS_M- 
CC 

NITRATE_INST_LO- 
AD 

YYYY MM DD HH 

MIN SEC DATE TIME DATE_TIME NITRATE_H_MGL 

NITRATE_H_L_KGD LINEX LINEY       

 
▼Robust Regression 
 

 
13803 case(s) deleted due to missing data. 

 
Dependent Variable TriOS Nitrate-N 

conc. (mg/L) 

No. of cases 29 

No. of Regressors 1 

 
Least Trimmed Squares (LTS) Regression 

 
Size of Subset 29 

Number of C-Steps 2 

Maximum Number of Replications 500 

Number of Solutions for Final C-Steps 10 

Intercept Adjustment NO 

Number of Squared Residuals Minimized (h) 14 

Breakdown Value 49.99% 

 
LTS Parameter Estimates 

Effect Coefficient 

CONSTANT 0.014 

NNN conc. (mg/L) 0.992 

 
Scale Estimates 

Scale (LTS) 0.007 

Scale (Weighted) 0.009 

 
Cutoff Point 3.000 

Number of Outliers Detected 5 

 
Robust R-square 0.998 

 
Ordinary Least Squares (OLS) Regression for Outlier Free Data  
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Multiple R 0.998 

Squared Multiple R 0.997 

Adjusted Squared Multiple R 0.997 

Standard Error 0.010 

 

OLS Parameter Estimates 

Effect Coefficient Standard Error 95.00% Confidence Interval 

Lower Upper 

CONSTANT 0.019 0.004 0.011 0.028 

NNN conc. (mg/L) 0.987 0.012 0.962 1.012 

 
Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 0.634 1 0.634 6803.695 0.000 

Residual 0.002 22 0.000     

 
Durbin-Watson D Statistic 1.124 

First Order Autocorrelation 0.345 
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Data for the following results were selected according to 
SELECT NITRATE_TRIOS_MCC >0 AND INST_TRIOS_LOAD_KGD >0 
 
13662 case(s) are deleted due to missing data. 

 
Eigenvalues of Unit Scaled 
X'X 
1 2 

1.866 0.134 

 
Condition 
Indices 
1 2 

1.000 3.733 

 
Variance Proportions 

  1 2 

CONSTANT 0.067 0.933 

Grab nitrate-N (mg/L) 0.067 0.933 

 
Dependent Variable TriOS nitrate-N 

conc. (mg/L) 

N 29 

Multiple R 0.989 

Squared Multiple R 0.979 

Adjusted Squared Multiple R 0.978 

Standard Error of Estimate 0.027 

 
Regression Coefficients B = (X'X)-1X'Y 

Effect Coefficient Standard Error Std. 
Coefficient 

Tolerance t p-Value 

CONSTANT 0.027 0.010 0.000 . 2.702 0.012 

Grab nitrate-N (mg/L) 0.987 0.028 0.989 1.000 35.075 0.000 
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Confidence Interval for Regression Coefficients 

Effect Coefficient 95.0% Confidence Interval VIF 

Lower Upper 

CONSTANT 0.027 0.006 0.047 . 

Grab nitrate-N (mg/L) 0.987 0.930 1.045 1.000 

 
Correlation Matrix of Regression Coefficients 

  CONSTANT Grab nitrate-N 
(mg/L) 

CONSTANT 1.000   

Grab nitrate-N (mg/L) -0.866 1.000 

 
Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 0.881 1 0.881 1230.257 0.000 

Residual 0.019 27 0.001     

 
WARNING  

 
Case 4527 is an Outlier (Studentized Residual : 3.865) 

Case 12950 is an Outlier (Studentized Residual : 2.891) 

 
Durbin-Watson D-Statistic 2.058 

First Order Autocorrelation -0.038 

 
Information Criteria 

AIC -123.775 

AIC (Corrected) -122.815 

Schwarz's BIC -119.674 
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▼General Linear Model 
 
Data for the following results were selected according to 
SELECT NITRATE_TRIOS_MCC >0 AND INST_TRIOS_LOAD_KGD >0 
 
13662 case(s) are deleted due to missing data. 

 
Eigenvalues of Unit Scaled 
X'X 
1 2 

1.866 0.134 

 
Condition 
Indices 
1 2 

1.000 3.733 

 
Variance Proportions 

  1 2 

CONSTANT 0.067 0.933 

Grab nitrate-N (mg/L) 0.067 0.933 

 
Dependent Variable TriOS nitrate-N 

conc. (mg/L) 

N 29 

Multiple R 0.989 

Squared Multiple R 0.979 

Adjusted Squared Multiple R 0.978 

Standard Error of Estimate 0.027 

 
Regression Coefficients B = (X'X)-1X'Y 

Effect Coefficient Standard Error Std. 
Coefficient 

Tolerance t p-Value 

CONSTANT 0.027 0.010 0.000 . 2.702 0.012 

Grab nitrate-N (mg/L) 0.987 0.028 0.989 1.000 35.075 0.000 
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Confidence Interval for Regression Coefficients 

Effect Coefficient 95.0% Confidence Interval VIF 

Lower Upper 

CONSTANT 0.027 0.006 0.047 . 

Grab nitrate-N (mg/L) 0.987 0.930 1.045 1.000 

 
Correlation Matrix of Regression Coefficients 

  CONSTANT Grab nitrate-N 
(mg/L) 

CONSTANT 1.000   

Grab nitrate-N (mg/L) -0.866 1.000 

 
Analysis of Variance 

Source Type III SS df Mean Squares F-Ratio p-Value 

Regression 0.881 1 0.881 1230.257 0.000 

Residual 0.019 27 0.001     

 
WARNING  

 
Case 4527 is an Outlier (Studentized Residual : 3.865) 

Case 12950 is an Outlier (Studentized Residual : 2.891) 

 
Durbin-Watson D-Statistic 2.058 

First Order Autocorrelation -0.038 

 
Information Criteria 

AIC -123.775 

AIC (Corrected) -122.815 

Schwarz's BIC -119.674 
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Load values 
 
▼General Linear Model 
 
13800 case(s) are deleted due to missing data. 

 
Eigenvalues of Unit Scaled 
X'X 
1 2 

1.648 0.352 

 
Condition 
Indices 
1 2 

1.000 2.163 

 
Variance Proportions 

  1 2 

CONSTANT 0.176 0.824 

Grab nitrate-N inst. load (kg/d) 0.176 0.824 

 
Dependent Variable TriOS nitrate-N 

inst. load 
(kg/d) 

N 29 

Multiple R 0.992 

Squared Multiple R 0.984 

Adjusted Squared Multiple R 0.983 

Standard Error of Estimate 25.711 

 
Regression Coefficients B = (X'X)-1X'Y 

Effect Coefficient Standard Error Std. 
Coefficient 

Tolerance t p-Value 

CONSTANT 12.860 6.266 0.000 . 2.052 0.050 

Grab nitrate-N inst. load (kg/d) 1.075 0.026 0.992 1.000 40.837 0.000 

file://///Untitled.syo
file://///Untitled.syo


 

Review of high frequency water quality data  125 

 

 

Confidence Interval for Regression Coefficients 

Effect Coefficient 95.0% Confidence Interval VIF 

Lower Upper 

CONSTANT 12.860 0.002 25.718 . 

Grab nitrate-N inst. load (kg/d) 1.075 1.021 1.129 1.000 

 
Correlation Matrix of Regression Coefficients 

  CONSTANT Grab nitrate-N 
inst. load 
(kg/d) 

CONSTANT 1.000   

Grab nitrate-N inst. load (kg/d) -0.648 1.000 

 
Analysis of Variance 

Source Type III SS df Mean Squares F-Ratio p-Value 

Regression 1102396.590 1 1102396.590 1667.645 0.000 

Residual 17848.345 27 661.050     

 
WARNING  

 
Case 4527 is an Outlier (Studentized Residual : 7.196) 

Case 7791 has large Leverage (Leverage : 0.826) 

 
Durbin-Watson D-Statistic 2.333 

First Order Autocorrelation -0.170 

 
Information Criteria 

AIC 274.547 

AIC (Corrected) 275.507 

Schwarz's BIC 278.649 
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Appendix D Deseasonalised trend analysis of grab and TriOS data 
Grab sample, entire record, 1983-2018 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for NNN_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.01 per year or 3.84% per 
year) 
Slope is positive 

t, df 7.44, 308 

H0: no slope Reject, P = 0.00 

 

Grab sample, September 2016-April 2018 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for NNN_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.05 per year or 14.75% per 
year) 
 
Null hypothesis - unable to detect trend:  

t,df 1.13,28 

H0: no slope Fail to reject, P = 0.27 
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TriOS instantaneous – Trimmed (excludes data not in range from 0.00 to 2.00 mg/L inclusive) 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.08 per year or 19.78% per 
year) 
Slope is positive 

t,df 122.63,237923 

H0: no slope Reject, P = 0.00 

 

TriOS hourly average, with spikes 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for H_Avg_Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.08 per year or 22.52% per 
year) 
Slope is positive 

t,df 21.68,13646 

H0: no slope Reject, P = 0.00 
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TriOS hourly average – Trimmed (excludes data not in range from 0.00 to 2.00 mg/L 
inclusive) 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for H_Avg_Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.08 per year or 19.80% per 
year) 
Slope is positive 

t,df 29.13,13506 

H0: no slope Reject, P = 0.00 

 

TriOS instantaneous, daily 10:00-11:00 average value 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.07 per year or 19.08% per 
year) 
Slope is positive 

t,df 5.77,564 

H0: no slope Reject, P = 0.00 
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TriOS instantaneous, trimmed, daily 10:00 reading (i.e., single value) 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.07 per year or 19.08% per 
year) 
Slope is positive 

t,df 5.77,564 

H0: no slope Reject, P = 0.00 

 

TriOS instantaneous, trimmed, weekly 10:30 reading on 1st, 8th, 15th, 22nd and 28th of 
each month 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.10 per year or 25.33% per 
year) 
Slope is positive 

t,df 3.12,91 

H0: no slope Reject, P = 0.00 
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TriOS instantaneous, trimmed, fortnightly 10:30 reading on 1st and 15th of each month 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.10 per year or 28.12% per 
year) 
Slope is positive 

t,df 2.05,36 

H0: no slope Reject, P = 0.05 

 

TriOS instantaneous, trimmed, monthly 10:30 reading on 10th of each month 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.02 per year or 6.15% per 
year) 
Null hypothesis - unable to detect trend:  

t,df 0.43,16 

H0: no slope Fail to reject, P = 0.67 
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TriOS instantaneous, trimmed, monthly 10:30 reading on 15th of each month 

 

Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Average of Nitrate_TriOS_McC_mgL 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.11 per year or 33.83% per 
year) 
Null hypothesis - unable to detect trend:  

t,df 1.96,17 

H0: no slope Fail to reject, P = 0.07 

 

Test for trend in variance over time 
The “TriOS instantaneous, trimmed, daily 10:30 reading (i.e., single value)” subset of data was 

selected for this assessment. 

 
DeSeasonalised trend analysis of Variance 
Trend removed by subtracting seasonal variation derived by fitting a generalised additive model with 
7 degrees of freedom to seasonal data for Variance 
Significance level is 0.05 
The slope of the trend line fitted to deseasonalised data is 0.00 per day (0.01 per year or 56.32% per 
year) 
Null hypothesis - unable to detect trend:  

t,df 1.43,18 

H0: no slope Fail to reject, P = 0.17 
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Appendix E Aparima River 
Summary statistics for discharge data 

 
  Flow (L/s) 

N of Cases 159652 

Minimum 1094.000 

Maximum 266445.000 

Median 11808.000 

Arithmetic Mean 22594.653 

Standard Error of Arithmetic Mean 73.095 

95.0% LCL of Arithmetic Mean 22451.389 

95.0% UCL of Arithmetic Mean 22737.916 

Standard Deviation 29206.096 

Coefficient of Variation 1.293 

Method = CLEVELAND   

1.000% 1900.000 

5.000% 3008.000 

10.000% 3711.000 

20.000% 5292.000 

25.000% 6089.000 

30.000% 6968.000 

40.000% 8829.000 

50.000% 11808.000 

60.000% 15662.000 

70.000% 22107.000 

75.000% 26028.000 

80.000% 31671.400 

90.000% 55564.000 

95.000% 82099.700 

99.000% 151600.680 

 
 
 
 
Results for Measurement technique = Grab nitrate-N (mg/L)  

 
  Nitrate-N conc. 

(mg/L) 
Nitrate-N conc. 
(mg/L) 

 Grab TriOS 

N of Cases 327 282 

Minimum 0.142 0.160 

Maximum 2.400 2.287 

Arithmetic Mean 1.008 1.086 

Standard Deviation 0.512 0.500 

Shapiro-Wilk Statistic 0.967 0.972 

Shapiro-Wilk p-Value 0.000 0.000 

Method = CLEVELAND     

1.000% 0.175 0.240 

5.000% 0.300 0.386 

10.000% 0.360 0.420 

20.000% 0.529 0.570 

25.000% 0.613 0.692 
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  Nitrate-N conc. 
(mg/L) 

Nitrate-N conc. 
(mg/L) 

30.000% 0.650 0.795 

40.000% 0.833 0.900 

50.000% 0.960 1.063 

60.000% 1.120 1.230 

70.000% 1.264 1.349 

75.000% 1.310 1.410 

80.000% 1.451 1.481 

90.000% 1.712 1.762 

95.000% 2.000 2.056 

99.000% 2.300 2.245 

 
 
Wilcoxon Signed-Rank Test Results 

 
Data for the following results were selected according to 
SELECT NITRATE_MGL  >0 AND GRAB_NITRATE_N <>. 
 

 
Counts of Differences (row variable greater than column) 

 
  TriOS nitrate-N 

(mg/L) 
Grab nitrate-N 
(mg/L) 

TriOS nitrate-N (mg/L) 0.000 265.000 

Grab nitrate-N (mg/L) 18.000 0.000 

 
Z = (Sum of signed ranks)/Square root (sum of squared ranks) 

 
  TriOS nitrate-N 

(mg/L) 
Grab nitrate-N 
(mg/L) 

TriOS nitrate-N (mg/L) 0.000   

Grab nitrate-N (mg/L) -12.792 0.000 

 
Two-Sided Probabilities using Normal Approximation 

 
  TriOS nitrate-N 

(mg/L) 
Grab nitrate-N 
(mg/L) 

TriOS nitrate-N (mg/L) 1.000   

Grab nitrate-N (mg/L) 0.000 1.000 

 
> end 

 
 
▼Robust Regression 
 

 
Dependent Variable TRIOS_NITRATE_M- 

GL 

No. of cases 282 

No. of Regressors 1 

 
Least Absolute Deviations (LAD) Regression 

 
Method of Estimation IRLS 
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Raw R-square (1-Residual/Total) 0.994 

R-square(Observed vs. Predicted) 0.965 

 

LAD Parameter Estimates 

Effect Coefficient 

CONSTANT 0.133 

GRAB_NNN_MGL 0.949 

 
Scale Estimates 0.092 

 
Cutoff Point 3.000 

Number of Outliers Detected 3 

 
Ordinary Least Squares (OLS) Regression for Outlier Free Data  

 
Multiple R 0.991 

Squared Multiple R 0.982 

Adjusted Squared Multiple R 0.982 

Standard Error 0.067 

 

OLS Parameter Estimates 

Effect Coefficient Standard Error 95.00% Confidence Interval 

Lower Upper 

CONSTANT 0.117 0.009 0.100 0.134 

GRAB_NNN_MGL 0.971 0.008 0.955 0.986 

 
Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 68.476 1 68.476 15327.534 0.000 

Residual 1.238 277 0.004     

 
Durbin-Watson D Statistic 0.809 

First Order Autocorrelation 0.591 

 

 



 

136 Review of high frequency water quality data 
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▼General Linear Model 
 

 
26371 case(s) are deleted due to missing data. 

 
Eigenvalues of Unit Scaled 
X'X 
1 2 

1.889 0.111 

 
Condition 
Indices 
1 2 

1.000 4.132 

 
Variance Proportions 

  1 2 

CONSTANT 0.055 0.945 

GRAB_NNN_MGL 0.055 0.945 

 
Dependent Variable TRIOS_NITRATE_M- 

GL 

N 282 

Multiple R 0.983 

Squared Multiple R 0.965 

Adjusted Squared Multiple R 0.965 

Standard Error of Estimate 0.093 

 
Regression Coefficients B = (X'X)-1X'Y 

Effect Coefficient Standard Error Std. 
Coefficient 

Tolerance t p-Value 

CONSTANT 0.133 0.012 0.000 . 10.925 0.000 

GRAB_NNN_MGL 0.949 0.011 0.983 1.000 88.271 0.000 

 

Confidence Interval for Regression Coefficients 

Effect Coefficient 95.0% Confidence Interval VIF 

Lower Upper 

CONSTANT 0.133 0.109 0.157 . 

GRAB_NNN_MGL 0.949 0.928 0.970 1.000 

 
Correlation Matrix of Regression Coefficients 

  CONSTANT GRAB_NNN_MGL 

CONSTANT 1.000   

GRAB_NNN_MGL -0.889 1.000 

 
Analysis of Variance 

Source Type III SS df Mean Squares F-Ratio p-Value 

Regression 67.698 1 67.698 7791.710 0.000 

Residual 2.433 280 0.009     

 
WARNING  
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Case 649 is an Outlier (Studentized Residual : -12.590) 

Case 1297 is an Outlier (Studentized Residual : -4.658) 

 
Durbin-Watson D-Statistic 1.412 

First Order Autocorrelation 0.291 

 
Information Criteria 

AIC -534.030 

AIC (Corrected) -533.943 

Schwarz's BIC -523.104 
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Load estimates – grab samples 
 
Details of LOADEST are provided in Runkel et al. (2004) 
 
Ln(Load) = a0 + a1 LnQ + a2 LnQ^2 + a3 Sin(2 pi dtime) + a4 Cos(2 pi dtime) + a5 dtime + a6 dtime^2 
 
where: 
       Load  = constituent load [kg/d] 
       LnQ   = Ln(Q) - center of Ln(Q) 
       dtime = decimal time - center of decimal time 
 
Model Coefficients 
  a0         a1         a2         a3         a4         a5         a6 
AMLE    7.5322     1.1213    -0.0676    -0.1338     0.6599     0.0750     0.1039 
 
AMLE Regression Statistics 
R-Squared:   94.18 
Residual:   0.1398 
Serial Correlation of Residuals:   0.8164 
Prob. Plot Corr. Coeff. (PPCC) :   0.9925 
Significance Level of PPCC Test:  3.348E-03 
 
Coeff.     Std.Dev.     t-ratio       P Value 
a0         0.0572        131.71       5.502-278 
a1         0.0224         50.09       4.559-153 
a2         0.0163         -4.15       3.481E-05 
a3         0.0416         -3.22       1.248E-03 
a4         0.0494         13.36       3.926E-33 
a5         0.0260          2.88       3.757E-03 
a6         0.0354          2.94       3.183E-03 
 
Correlation Between Explanatory Variables 
Explanatory variable corresponding to: 
 a1         a2         a3         a4         a5 
a2    0.0000 
a3   -0.2615     0.1490 
a4   0.4738     0.0022    -0.0998 
a5   -0.1549     0.2174     0.4553    -0.3148 
a6   -0.0774    -0.2998    -0.2380    -0.4744     0.0000 
 
Additional Regression Statistics 
MLE Residual Variance: 0.1398 
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Figure E-1: Comparison of nitrate-N load estimated using grab sample results (using a regression model), and hourly average TriOS concentration data for the period April 

2015 to March 2018.  Note log10 scale for y-axis. 
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Figure E-2: Comparison of nitrate-N load estimated using grab sample results (using a regression model), and hourly average TriOS concentration data for the period April 

2015 to March 2018. 
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Model results for part of 2015 calendar year 
 

 

Figure E-3: Comparison of nitrate-N load estimated using grab sample results(using a regression model), 
and hourly average TriOS concentration data for part of the 2015 calendar year. Note log10 scale for y-axis. 

 

Model results for 2016 calendar year 
 

 

Figure E-4: Comparison of nitrate-N load estimated using grab sample results(using a regression model), 
and hourly average TriOS concentration data for the 2016 calendar year. Note log10 scale for y-axis. 
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Model results for 2017 calendar year 
 

 

Figure E-5: Comparison of nitrate-N load estimated using grab sample results(using a regression model), 
and hourly average TriOS concentration data for the 2017 calendar year. Note log10 scale for y-axis. 

 

Model results for part of 2018 calendar year 
 

 

Figure E-6: Comparison of nitrate-N load estimated using grab sample results(using a regression model), 
and hourly average TriOS concentration data for part of the 2018 calendar year. Note log10 scale for y-axis. 
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Figure E-7: Comparison of load estimates derived from grab samples (as LOADEST AMLE model estimate) and TriOS estimated nitrate-N concentrations and discharge for the 

period April 2015-March 2018, expressed as monthly values in each year. The TriOS estimates are derived from instantaneous measurements, monthly and weekly 

subsamples. The monthly TriOS samples represent the hourly average concentration measured on the 10th day of each month between 10:00 and 11:00.  The 

weekly TriOS samples represent the hourly average concentration measured on the 10th day of each of the 1st, 8th, 15th 22nd and 28th day of each month. 
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Table E-1: Summary statistics for load estimates derived from grab samples using an AMLE model using 
the LOADEST modelling package.   Details of LOADEST are provided in Runkel et al. (2004). 

Period 
No conc. vals./ 
measurement  

period 

Mean load  
(kg/d) 

LCL UCL 
Std. Error of  
Prediction 

Std. Error 

Est. Period 313 2113 1980 2253 70 69 

Autumn 132 1583 1484 1685 51 49 

Winter 103 4787 4418 5178 194 191 

Spring 31 1688 1509 1882 95 94 

Summer 47 412.95 373.16 455.79 21.09 20.57 

Apr. 2015 53 1620 1483 1766 72 63 

May. 2015 35 4716 4381 5069 176 156 

Jun. 2015 46 10103 9324 10929 410 370 

Jul. 2015 3 5717 5167 6310 292 278 

Aug. 2015 2 4963 4413 5562 293 281 

Sep. 2015 2 2669 2337 3034 178 171 

Oct. 2015 2 1585 1372 1821 115 107 

Nov. 2015 2 477.44 412.81 549.28 34.83 34.02 

Dec. 2015 3 382.51 328.45 442.89 29.21 28.41 

Jan. 2016 2 172.63 148.39 199.69 13.1 12.58 

Feb. 2016 2 410.18 348.69 479.34 33.35 30.75 

Mar. 2016 2 234.39 203.7 268.37 16.51 16.09 

Apr. 2016 2 355.02 310.41 404.2 23.94 23.34 

May. 2016 33 4527 4079 5009 237 217 

Jun. 2016 2 2224 1971 2499 135 130 

Jul. 2016 20 6662 6056 7312 321 290 

Aug. 2016 2 3614 3242 4017 198 180 

Sep. 2016 2 1366 1202 1547 88 83 

Oct. 2016 15 2159 1888 2457 145 138 

Nov. 2016 2 683.75 593.67 783.57 48.47 46.93 

Dec. 2016 2 233.99 204.16 266.94 16.02 15.57 

Jan. 2017 2 555.57 473.41 647.84 44.53 42.75 

Feb. 2017 2 329.37 284.4 379.41 24.25 22.86 

Mar. 2017 2 82.86 69.6 97.89 7.22 7.11 

Apr. 2017 2 199.25 172.19 229.33 14.59 14.04 

May. 2017 2 1885 1671 2118 114 106 

Jun. 2017 24 3059 2712 3439 185 170 

Jul. 2017 2 4862 4254 5531 326 315 

Aug. 2017 2 2485 2131 2880 191 187 

Sep. 2017 2 5409 4707 6186 378 362 

Oct. 2017 2 546.7 466.93 636.14 43.2 42.23 

Nov. 2017 2 321.97 278.29 370.53 23.54 22.65 

Dec. 2017 2 98.83 82.65 117.23 8.83 8.7 

Jan. 2018 2 58.3 47.37 71 6.03 5.96 

Feb. 2018 30 1579 1381 1796 106 99 

Mar. 2018 1 753.61 653.57 864.55 53.85 51.55 

Apr. 2018 - 1568 1320 1848 135 127 
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Table E-2: Summary statistics for load estimates derived as the product of ten-minute interval TriOS 
sensor measurement and corresponding discharge values.    

Period 
No conc. vals./ 
measurement  

period 

Mean load 
(kg/d) 

LCL UCL Std. Error 
Standard  
Deviation 

Est. Period 151541 1793.9 1778.4 1809.6 7.9 3098 

Autumn 6864 1550 1519 1581 15.8 3122 

Winter 6528 3942 3897.5 3987.3 23 4301 

Spring 6552 1431 1411.569 1450.574 10 1960 

Summer 6480 462 451.847 472.148 5.2 1019 

Apr. 15 3662 1423.4 1360.8 1486.0 31.9 1931.7 

May. 15 4251 5313.3 5200.1 5426.5 57.7 3764.6 

Jun. 15 4016 8748.3 8594.0 8902.6 78.7 4987.5 

Jul. 15 4357 4455.8 4409.2 4502.3 23.7 1566.8 

Aug. 15 4101 4002.9 3928.5 4077.2 37.9 2428.8 

Sep. 15 4258 2350.2 2304.4 2396.1 23.4 1525.8 

Oct. 15 4189 1667.6 1589.5 1745.8 39.9 2580.2 

Nov. 15 4253 697.5 691.5 703.6 3.1 201.1 

Dec. 15 4391 517.6 508.6 526.6 4.6 303.6 

Jan. 16 4398 293.1 285.8 300.5 3.8 248.8 

Feb. 16 4124 446.0 420.2 471.8 13.2 845.5 

Mar. 16 4357 233.2 229.9 236.5 1.7 111.3 

Apr. 16 4258 183.0 180.6 185.4 1.2 80.5 

May. 16 4388 4412.1 4247.7 4576.5 83.8 5554.3 

Jun. 16 4193 2087.8 2032.0 2143.7 28.5 1844.1 

Jul. 16 3326 5228.5 5021.4 5435.7 105.7 6093.1 

Aug. 16 1781 1345.8 1338.1 1353.6 3.9 166.5 

Sep. 16 4302 1186.3 1156.2 1216.4 15.4 1007.6 

Oct. 16 4435 2050.6 1970.7 2130.4 40.7 2712.1 

Nov. 16 4298 902.6 886.2 919.0 8.3 547.2 

Dec. 16 4436 355.2 352.1 358.2 1.6 104.3 

Jan. 17 4441 518.7 500.4 536.9 9.3 621.5 

Feb. 17 3978 254.5 247.3 261.8 3.7 233.1 

Mar. 17 4344 109.9 109.3 110.4 0.3 18.2 

Apr. 17 3709 114.7 112.9 116.6 1.0 58.2 

May. 17 3689 1789.4 1694.0 1884.8 48.7 2955.6 

Jun. 17 4291 3352.0 3168.7 3535.3 93.5 6125.0 

Jul. 17 4458 3976.3 3872.0 4080.7 53.2 3552.9 

Aug. 17 4459 1414.3 1396.5 1432.1 9.1 605.6 

Sep. 17 4284 3114.6 3020.5 3208.7 48.0 3142.0 

Oct. 17 4460 502.0 496.3 507.7 2.9 193.3 

Nov. 17 4315 440.0 427.1 452.9 6.6 431.8 

Dec. 17 4462 117.3 116.3 118.3 0.5 34.0 

Jan. 18 4458 50.9 50.3 51.6 0.3 21.7 

Feb. 18 4019 1701.8 1622.0 1781.5 40.7 2579.5 

Mar. 18 4239 470.9 457.3 484.6 6.9 451.7 

Apr. 18 2620 965.3 907.9 1022.8 29.3 1361.8 
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Table E-3: Summary statistics for load estimates derived as the product of TriOS one-hour sensor 
measurement and corresponding discharge values.    

Period 
No conc. vals./ 
measurement  

period 

Mean load 
(kg/d) 

LCL UCL Std. Error 
Standard  
Deviation 

Est. Period 26345 1722.8 1685.9 1759.6 18.8 3050.2 

Autumn 6861 1438.6 1509.3 1367.9 36.1 2988.6 

Winter 6524 3561.6 3665.1 3458.1 52.8 4265.1 

Spring 6513 1431.6 1479.1 1384.1 24.2 1956.4 

Summer 6447 458.5 483.6 433.5 12.8 1025.6 

Apr.15 647 1364.3 1215.4 1513.3 75.9 1929.4 

May.15 696 5084.3 4814.5 5354.1 137.4 3625.8 

Jun.15 648 8965.5 8578.9 9352.2 196.9 5012.3 

Jul.15 744 4449.8 4337.2 4562.4 57.4 1564.9 

Aug.15 744 3800.5 3618.9 3982.0 92.5 2522.1 

Sep.15 720 2350.7 2239.1 2462.4 56.9 1525.7 

Oct.15 706 1664.7 1474.6 1854.8 96.8 2572.4 

Nov.15 720 696.5 681.7 711.4 7.6 202.7 

Dec.15 688 483.5 463.5 503.6 10.2 267.2 

Jan.16 744 293.1 275.2 311.0 9.1 248.6 

Feb.16 696 444.2 381.5 506.9 32.0 842.9 

Mar.16 744 232.2 224.1 240.3 4.1 112.4 

Apr.16 720 182.9 177.0 188.8 3.0 80.3 

May.16 720 4223.5 3820.6 4626.4 205.2 5506.5 

Jun.16 720 2071.1 1936.6 2205.7 68.5 1838.6 

Jul.16 719 4139.7 3709.0 4570.4 219.4 5882.3 

Aug.16 743 542.1 493.9 590.3 24.6 669.5 

Sep.16 720 1185.4 1111.7 1259.0 37.5 1006.2 

Oct.16 744 2045.9 1851.0 2240.9 99.3 2708.9 

Nov.16 720 901.4 861.3 941.5 20.4 547.5 

Dec.16 744 355.0 347.5 362.5 3.8 104.2 

Jan.17 744 517.7 473.1 562.4 22.7 620.5 

Feb.17 671 252.8 235.2 270.5 9.0 233.0 

Mar.17 696 110.5 109.1 111.8 0.7 18.3 

Apr.17 720 102.3 96.9 107.7 2.8 73.9 

May.17 742 1654.0 1440.5 1867.6 108.8 2963.5 

Jun.17 719 3352.5 2904.8 3800.2 228.0 6114.8 

Jul.17 743 3976.7 3720.7 4232.7 130.4 3554.2 

Aug.17 744 1414.2 1370.5 1457.8 22.2 605.9 

Sep.17 719 3115.2 2885.8 3344.6 116.8 3133.0 

Oct.17 744 502.1 488.1 516.0 7.1 193.4 

Nov.17 720 439.8 408.2 471.4 16.1 431.8 

Dec.17 744 117.3 114.9 119.8 1.2 34.0 

Jan.18 744 50.9 49.4 52.5 0.8 21.7 

Feb.18 672 1714.2 1517.4 1911.0 100.2 2598.3 

Mar.18 744 459.2 425.6 492.7 17.1 466.0 

Apr.18 432 888.9 760.8 1017.1 65.2 1355.3 
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Table E-4: Summary statistics for load estimates derived from weekly subsample values derived from ten-

minute interval TriOS sensor measurements.   Sub-sample values are the hourly average values for the 

period 10:00-11:00 on the 1st, 8th, 15th, 22nd and 28th day of each month.  An AMLE model from the 

LOADEST modelling package was used. 

Period 
No conc. vals./ 
measurement  

period 

Mean load  
(kg/d) 

LCL UCL 
Std. Error of  
Prediction 

Std. Error 

Est. Period 173 1949 1802 2104 77 77 

Autumn 43 1362 1232 1502 69 68 

Winter 41 4162 3811 4535 185 183 

Spring 45 1831 1668 2006 86 85 

Summer 44 460.72 412.07 513.5 25.88 25.63 

Apr. 2015 3 1443 1281 1621 87 83 

May. 2015 5 4082 3633 4570 239 232 

Jun. 2015 5 9319 8269 10463 560 544 

Jul. 2015 5 4871 4421 5354 238 230 

Aug. 2015 5 4802 4352 5285 238 228 

Sep. 2015 5 2867 2600 3153 141 135 

Oct. 2015 5 2180 1933 2450 132 122 

Nov. 2015 5 662.88 600.38 730.06 33.09 32.08 

Dec. 2015 5 551.72 497.35 610.36 28.84 27.81 

Jan. 2016 5 247.53 223.95 272.9 12.49 11.88 

Feb. 2016 5 524.26 460.51 594.3 34.14 31.58 

Mar. 2016 5 270.18 246.92 295.02 12.27 11.81 

Apr. 2016 5 349.13 319.08 381.22 15.85 15.32 

May. 2016 5 4346 3832 4911 275 264 

Jun. 2016 4 1787 1644 1938 75 71 

Jul. 2016 5 6465 5783 7206 363 346 

Aug. 2016 2 3484 3164 3827 169 156 

Sep. 2016 5 1420 1305 1543 61 56 

Oct. 2016 5 2770 2458 3112 167 160 

Nov. 2016 5 878.98 801.61 961.74 40.86 38.96 

Dec. 2016 5 320.36 295.19 347.08 13.24 12.62 

Jan. 2017 5 691.34 606.32 784.88 45.57 43.87 

Feb. 2017 4 383.84 344.54 426.35 20.88 19.43 

Mar. 2017 5 97.19 88.38 106.63 4.66 4.51 

Apr. 2017 4 178.61 162.41 195.96 8.56 8.16 

May. 2017 4 1387 1241 1546 78 73 

Jun. 2017 5 2195 1949 2462 131 123 

Jul. 2017 5 3350 3002 3728 185 179 

Aug. 2017 5 1782 1610 1969 92 89 

Sep. 2017 5 4864 4227 5569 343 333 

Oct. 2017 5 509.13 461.77 560 25.07 24.23 

Nov. 2017 5 330.56 300.16 363.18 16.08 15.32 

Dec. 2017 5 117.11 106.5 128.48 5.61 5.44 

Jan. 2018 5 69.81 63.27 76.84 3.46 3.36 

Feb. 2018 5 1324 1093 1589 127 124 

Mar. 2018 5 505.16 442.18 574.54 33.78 32.79 

Apr. 2018 1 896 773 1034 66 63 
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Table E-5: Summary statistics for load estimates derived from monthly subsample values derived from 

ten-minute interval TriOS sensor measurements.   Sub-sample values are the hourly average values for 

the period 10:00-11:00 for the 10th day of each month. An AMLE model from the LOADEST modelling 

package was used. 

Period 
N/Measurement  

period 
Mean load  

(kg/d) 
LCL UCL 

Std. Error of  
Prediction 

Std. Error 

Est. Period 34 1790 1527 2085 142 142 

Autumn 9 1175 947 1442 126 126 

Winter 8 3646 3073 4294 312 311 

Spring 9 1875 1573 2218 165 164 

Summer 9 486.41 377.32 617.22 61.31 61.23 

Apr. 2015 1 1215 974 1497 134 133 

May. 2015 1 3336 2654 4140 380 378 

Jun. 2015 1 7543 5932 9456 900 896 

Jul. 2015 1 4120 3500 4817 336 334 

Aug. 2015 1 4273 3619 5010 355 352 

Sep. 2015 1 2716 2321 3160 214 212 

Oct. 2015 1 2183 1756 2682 237 233 

Nov. 2015 1 706.12 608.39 815.02 52.74 52.29 

Dec. 2015 1 589.91 489.76 704.44 54.82 54.43 

Jan. 2016 1 258.93 216.61 307.08 23.1 22.88 

Feb. 2016 1 506.02 378.26 663.18 72.85 72.19 

Mar. 2016 1 260.75 224.79 300.81 19.4 19.23 

Apr. 2016 1 320.6 278.5 367.23 22.65 22.45 

May. 2016 1 3666 2803 4712 488 485 

Jun. 2016 1 1559 1344 1798 116 115 

Jul. 2016 1 5707 4633 6955 593 588 

Aug. 2016 1 3201 2705 3761 269 265 

Sep. 2016 1 1424 1223 1648 109 107 

Oct. 2016 1 2903 2303 3611 334 332 

Nov. 2016 1 970 814 1148 85 85 

Dec. 2016 1 361.95 310.87 419 27.6 27.36 

Jan. 2017 1 734.63 545.3 968.66 108.26 107.76 

Feb. 2017 1 402.5 319.04 501.12 46.52 46.08 

Mar. 2017 1 99.63 85 116.04 7.92 7.87 

Apr. 2017 1 172.27 147.47 200.04 13.42 13.27 

May. 2017 1 1255 1047 1492 114 112 

Jun. 2017 1 1973 1657 2332 172 169 

Jul. 2017 1 3117 2663 3627 246 244 

Aug. 2017 1 1767 1503 2063 143 142 

Sep. 2017 1 5010 4046 6135 533 529 

Oct. 2017 1 573.07 487.31 669.5 46.51 46.15 

Nov. 2017 1 387.31 335.88 444.34 27.69 27.3 

Dec. 2017 1 140.7 120.87 162.85 10.71 10.63 

Jan. 2018 1 82.75 70.81 96.1 6.45 6.4 

Feb. 2018 1 1384 943 1960 260 260 

Mar. 2018 1 521.88 422.2 637.98 55.11 54.71 

Apr. 2018 1 878 712 1071 92 91 
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Appendix F Mataura River 
 

Regression techniques to improve prediction 
 
Number of Variables : 11 

Number of Cases : 152000 

 
SYSTAT Rectangular file 
O:\ELF18203\Working\Mataura\Neale\Mataura_Hourly_Q_TriOSN_P_R_Grab2_select3.syz,  
Created data file Sat Oct 13 11:33:32 2018 containing variables: 
 

NITRATE_MGL YYYY MM DD HH MI 

TRIOSRIVER_NITR- 
ATE_MGL 

TRIOSPUMP_NITRA- 
TE_MGL 

DATE TIME DATE_TIME   

 
> REM -- Following commands were produced by the LTSREG dialog: 
> ROBREG 
> MODEL TRIOSRIVER_NITRATE_MGL = CONSTANT + TRIOSPUMP_NITRATE_MGL 
> LTS / NCSTEP = 2 NREP = 500 NBSOL = 10 
> ESTIMATE / CUTOFF = 3 CONFI = 0.95 TOL = 1e-012 ITER = 100 

 
▼Robust Regression 
 

 
Dependent Variable TRIOSRIVER_NITR- 

ATE_MGL 

No. of cases 152000 

No. of Regressors 1 

 
Least Trimmed Squares (LTS) Regression 

 
Size of Subset 300 

Number of C-Steps 2 

Maximum Number of Replications 500 

Number of Solutions for Final C-Steps 10 

Intercept Adjustment NO 

Number of Squared Residuals Minimized (h) 114000 

Breakdown Value 25% 

 
LTS Parameter Estimates 

Effect Coefficient 

CONSTANT 0.162 

TRIOSPUMP_NITRATE_MGL 0.917 

 
Scale Estimates 

Scale (LTS) 0.120 

Scale (Weighted) 0.091 

 
Cutoff Point 3.000 

Number of Outliers Detected 38499 

 
Robust R-square 0.867 
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Ordinary Least Squares (OLS) Regression for Outlier Free Data  

 
Multiple R 0.969 

Squared Multiple R 0.939 

Adjusted Squared Multiple R 0.939 

Standard Error 0.071 

 

OLS Parameter Estimates 

Effect Coefficient Standard Error 95.00% Confidence Interval 

Lower Upper 

CONSTANT 0.161 0.001 0.159 0.162 

TRIOSPUMP_NITRATE_MGL 0.919 0.001 0.918 0.921 

 
Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 8801.380 1 8801.380 1753349.476 0.000 

Residual 569.737 113499 0.005     

 
Durbin-Watson D Statistic 0.352 

First Order Autocorrelation 0.824 
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Subset of data selected  
 
Data for the following results were selected according to 
SELECT TRIOSRIVER_NITRATE_MGL >0.1 AND TRIOSRIVER_NITRATE_MGL <5 AND 
TRIOSPUMP_NITRATE_MGL >0.1 
 

 
Dependent Variable TriOS R 

nitrate-N conc. 
(mg/L) 

No. of cases 120197 

No. of Regressors 1 

 
Least Absolute Deviations (LAD) Regression 

 
Method of Estimation IRLS 

 
Raw R-square (1-Residual/Total) 0.982 

R-square(Observed vs. Predicted) 0.737 

 

LAD Parameter Estimates 

Effect Coefficient 

CONSTANT 0.234 

TriOS P nitrate-N conc. (mg/L) 0.833 

 
Scale Estimates 0.048 

 
Cutoff Point 3.000 

Number of Outliers Detected 14150 

Proportion of data 11.8% 

 
Ordinary Least Squares (OLS) Regression for Outlier Free Data  

 
Multiple R 0.984 

Squared Multiple R 0.969 

Adjusted Squared Multiple R 0.969 

Standard Error 0.046 

 

OLS Parameter Estimates 

Effect Coefficient Standard Error 95.00% Confidence Interval 

Lower Upper 

CONSTANT 0.161 0.001 0.160 0.162 

TriOS P nitrate-N conc. (mg/L) 0.927 0.001 0.926 0.928 

 
Analysis of Variance 

Source SS df Mean Squares F-Ratio p-Value 

Regression 7054.532 1 7054.532 3284219.732 0.000 

Residual 227.786 106045 0.002     
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Durbin-Watson D Statistic 0.280 

First Order Autocorrelation 0.860 

 

 

 
 

 

 

 
> REM -- End of commands from the LADREG dialog 
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Comparison of time series data collected at varying frequency 
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Appendix G Draft procedure for use of continuous nitrate sensors 
Examples of some of the effects of some of the procedures identified below are illustrated 

graphically in XXX to YYYY.  This material was originally presented and discussed in the October 2018 

workshop hosted by NIWA. 

Disclaimer 
The three agencies that contributed data for the case studies were canvassed to obtain information 

regarding current procedures in use.  These have been incorporated in the material that follow, 

which are largely based on published USGS procedures.  This should not be regarded as a 

recommendation for exclusive use of USGS procedures, or an endorsement of these procedures – 

rather, it has been used as a starting point. 

The Standard – nitrate-N sensors   
For data to meet the Standard, the following shall be achieved:  

Nitrate-N 

Measurement 

Accuracy  

Deviation from primary 

reference  
• Instrument specific 
• Concentration range dependent 

• Minimum accuracy specification to be defined  

Stationarity  Stationarity of record shall be maintained.  

  

Requirements  
As a means of achieving the Standard (QC 600), the following requirements apply:  

Units of 

Measurement  
  Nitrate-nitrogen, expressed as N (mg/L or g/m3) 

Resolution    
• Instrument specific 

• Concentration range dependent  
• To be recorded for each instrument type 

Precision    • Instrument specific 

• Concentration range dependent 

• To be recorded for each instrument type 

Timing of 

Measurements  
Maximum recording 

interval  
Record nitrate-N (eq) concentration at the logging time  

Measurement  A single value is reported at logging time.  

Any statistical function undertaken (i.e., estimation of 

average or median value derived from several discrete 

measurements) shall utilise a sample period smaller than or 

equal to the recording interval.  

The number of discrete values and time period over which 

these data are collected to be reported. 

Resolution  • Instrument specific 

Accuracy  ± 90 s/month  

Time zone  Record time as New Zealand Standard Time (NZST) only.  
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Supplementary 

measurements  
If instantaneous load 

or flux estimates are 

required…   

• Flow or discharge   

• Discrete or grab water samples for laboratory analysis of 

nitrate-N concentration   
• Date and time of grab sample to be related to time series 

Measurement 

statistics  
Details regarding method and derivation of statistics to be 

defined in the metadata.  

Laboratory 

validation tests 

Minimum test 

requirements 

Minimum required pre-deployment tests:  

• Record nitrate concentration of clean instrument in air. 

• Record nitrate concentration of clean instrument in high 

spectral purity water. 

• Follow manufacturer recommendations to apply baseline 

correction (zero the instrument) using high spectral purity 

water. 

Accuracy, precision 

and linearity checks 

Using natural waters (i.e., river water) spiked with known 

amounts on nitrate-N: 

• Perform accuracy, precision and linearity checks. 

• Estimate the recovery of added nitrate-N (i.e., account for 

nitrate-N in the river water). 

• Ensure the recovery is within accuracy specification of the 

sensor type. 

• Ensure that spiked samples are utilised immediately. 

• Ensure that particulate material is maintained in 

suspension. 

• When necessary, add organic matter and/or particulate 

material derived from suitable standard materials. 

Accuracy  Theoretical concentration estimation 

𝐶𝑐 =
𝐶𝑠𝑡𝑑  ×  𝑉𝑠𝑡𝑑

𝑉𝑠𝑎𝑚𝑝𝑙𝑒
  

Where 

𝐶𝑐 = calculated concentration of spiked sample (mg/L) 

𝐶𝑠𝑡𝑑 = concentration of nitrate spike standard (mg/L) 

𝑉𝑠𝑡𝑑 = volume of nitrate spike added (L) 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒 = total volume of solution after addition of spike (L) 

Recovery estimation 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) = 𝑅(%) =
𝐶𝑠  ×  𝐶𝑢

𝐶𝑐
 × 100 perc. 

Where 

𝐶𝑠 = measured conc. of spiked sample or nitrate standard 

𝐶𝑢 = measured conc. of unspiked sample or high spectral 

purity water 

𝐶𝑐  = calculated conc. of nitrate standard or matrix spike 

spectral purity water 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝑐𝑜𝑛𝑐) = (𝐶𝑠 − 𝐶𝑢) −  𝐶𝑐 
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Measured accuracy may be compared with manufacturer 

reported values. 

Bias (persistent under- or over estimation) may also be 

estimated and remedial action taken (e.g., baseline 

correction). 

Precision Precision is determined from repeated measures of a nitrate 

standard solution, or a spiked matrix solution.  A standard 

deviation and relative standard deviation may be calculated. 

These values may be compared with manufacturer 

specification.   

Manufacturer specifications are generally determined on 

high spectral purity water and may therefore better 

represent analytical precision – care is required to ensure 

that the difference between sample or analytical precision is 

compared. 

 Linearity checks • Multiple point calibration curve check. 

• Nitrate standards and spike concentrations to span range 

typical for deployment site. 

• Fitting a linear relationship to the data (𝑦 = 𝑎𝑥 + 𝑏) is 

useful.  The slope (a) should be near one, and the 

intercept (b) should be near zero, and the coefficient of 

determination (R2) should exceed say 0.95. 

Field validation 

methods  
Primary sensor tests  Minimum required pre-deployment tests:  

• Record nitrate concentration of clean instrument in air. 

• Record nitrate concentration of clean instrument in high 

spectral purity water.  

Secondary sensor 

tests 

• Using a second instrument of known performance, collect 

paired in situ measurements  

Primary reference 

measurement  
• Annual zero-point validation: ± defined value, which may 

be instrument specific 

• Monthly validation samples/measurements – grab sample 

submitted for laboratory analysis. 

• Annual validation grab sample set collected during a 

runoff event in nitrate-N spans some pre-defined 

measurement range, which may be catchment and 

instrument specific.  

Note: Validation samples are laboratory analysed.  

Tolerance  • Instrument specific 

• Concentration range dependent 

• To be recorded for each instrument type 
• These values and ranges may be matrix dependent 

Calibration  Frequency  • Calibration shall occur when validation confirms that the in 

situ sensor is not conforming to the accuracy of the 
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Standard (QC 600) and/or as per the manufacturer’s 

specifications.  

• In-situ calibration is unlikely to be achievable or practical. 

• The instrument should be swapped out and returned to 

base for calibration using suitable standards 

Method  •  Multi-point calibration using primary standards 

Metadata    Metadata to be recorded for all measurements.  

Quality Assurance    Protocols to be developed 

Processing of Data    All changes shall be documented.  

All data shall be quality coded as per a Quality Code 

flowchart, once one has been developed.  

 

The following table summarises best practice and is not required for QC 600:  

Validation Methods  Inspection of 

recording 

installations   

Sufficient to ensure the data collected are free from error 

and bias, both in turbidity and time.  

Archiving  Original and final 

records   

File, archive indefinitely and back up regularly:  

• raw and processed records  

• primary reference data  

• supplementary measurements  

• validation checks   

• site inspections  

• verification results, and metadata.  

Auditing    To be developed.  
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Mataura WQ Instrument Calibration and Cleaning Instructions 
Note the recorded sensor values before and after cleaning on the inspection record.  Either on site by 

connecting to the loggers, or afterwards from the telemetry record.  

Cleaning: 
Equipment:  Wipes, cotton buds, Acetone, and containers. These are stored in the shed. 
 
River TriOS: 

 

Figure G-1: The instrument and mounting bracket as it is withdrawn from the PVC protection tube. (Evan 
Baddock, NIWA). 

 

 

Figure G-2: Close up of the sensor windows and optical path with the automatic wiper at rest behind. (Evan 
Baddock, NIWA). 
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Figure G-3: Close up of the sensor after a two week deployment in the river (including major flood). 
Automatic wiper at rest behind. (Evan Baddock, NIWA). 

The build-up on and between the two lens needs removed with care so they do not get scratched. 
Use the large cotton buds soaked in Acetone to wipe between the lenses.  Acetone will remove any 
algae or silt film, and most mineral deposits. Also clean the wiper and probe body. 
 

Pump TriOS: In the container under the bench. 
Check that the pump is working. It comes on for 2 minutes of every 5 minute interval. Check that the 
water runs freely, and there is no build up on hose wall? Choose your time for checking this between 
pump cycles or removed the inlet clear hose into a bucket or this time. 

 

Figure G-4: Deployment of pump-fed TriOS sensor in instrument shed. (Evan Baddock, NIWA). 
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Figure G-5: Cleaning of optical surfaces with a large cotton bud soaked in acetone following removal of the 
upper screw to allow access to the lens faces. Full cleaning of the black measurement chamber/sleeve 
requires complete removal. Allan keys are left with the instrument for this purpose (Evan Baddock, NIWA). 

Pump in the river for pump-fed TriOS instrument: 
Remove and clean the intake mesh by unscrewing the black alkathene connector first, when this is 

loose the galvanised steel cap will turn, enabling easy removal of the pump and hose.   Care is 

required to not kink the alkathene pipe as its withdrawn. 

 

Figure G-6: Stainless steel mesh over pump intake for pump fed instrument. (Evan Baddock, NIWA). 

The stainless steel mesh covering the pump intake can be removed. It is a tight friction fit to stop it 
falling off.  The pump operates for 2 min every 5 min, but it can be run dry for a short period without 
damage. 
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Example of calibration worksheet/records: 

 
 
 

 

 
 
 
 
 

Mataura BM Site - TriOS Calibration NO3 only

18th May 2016 EB

Pump TriOS River TriOS

Initial logger readings: Comment

1100 0.137 locked 0.908 Chamber dry - pump blocked so no water for some time!

Modbus problem shows channel data flat lining with these values!

Initial manual readings: 0.153 dry 0.93 Raw downloads: logger(3).tar = Pump 170mb, logger(4).tar = River 302mb.

1100

Both in River Water: 0.862 0.93 Uncleaned - 7.3% Neon data shows around 10% - possible cal offsets missing?

Both in Solution Cleaned.

1.3 mg/l 1.24 / 1.25 / 1.24 1.3 / 1.29 / 1.28 / 1.3 So 1.3 to 1.24 difference = 4.6%

Back in River

1430 0.842 0.885 Cleaned - 4.8%

Pump Trios back in

chamber - 1500 0.854 / 0.858 0.895 4.40%

Mataura BM Site - Instrument Spec's

Instrument Model Serial# Parameter Range Accuracy Resolution

ISCO Samplers 6712 Water 0 - 30m line N/A N/A

Avalanche Sample

DAA  Bubbler H-3553 16D102663 Stage 1 - 10m 0.02% of Full Scale Output 0.0001

Drift = 0.05% FSO per year

Turbidity DTS - 12 NTU 0 - 1600 NTU ±2% of reading + 0.2 NTU (0-399 NTU) 0.01 NTU

±4% of reading (400-1,600 NTU)

TriOS 12S Photometer River = NO2 0 - 150 mg/l  +/- 5% +0.1 0.5

Pump = NO3 0 - 100 mg/l  +/- 5% +0.1 0.3

YSI Sonde EXO2 Temp -5 to 50°C  -5 to 35°C: ±0.01°C 35 to 50°C: ±0.05°C 0.001 °C

Salinity 0 to 70 ppt ±1.0% of reading or 0.1 ppt 0.01 ppt

EC 0-200 mS/cm 0 to 100: ±0.5% 100-200:  ±1% 0.0001 to 0.01 mS/cm

TSS 0 to 1500 mg/L Not Specified Variable

Turb 0 to 4000 FNU 0 to 999 FNU: 2%, 1000 to 4000 ±5% 0 to 999 FNU: 0.01

1000 to 4000 FNU: 0.1

Instrument Calibration recommendations Cleaning recommendations Other / Comment

ISCO Samplers When installed and when problems. General check over - spilled water etc… Volume calibrations both out when installed - 600ml give 900ml?

Possibly long lines and draw height causing this - to be watched!

DAA  Bubbler Against ESG every visit Purge gas line each month Don't use offset function - problems with large offsets!

In known standpipe (1, 2, 3m) yearly Check orifice for fouling

Turbidity Accurate readings for up to 12 months Each monthly visit

Check readings with HACH meter

TriOS 24 months (manufacturer) Each monthly visit - clean with Acetone Will Calibrate more offen with slight discrepancy between units?

25 months (manufacturer) Periodically remove pump chamber and clean

YSI Sonde Complete calibration in less than 15 minutes Each monthly visit - remove black outer cover. Do we need to purchase or hire the calibration unit?

using EXO’s suite of smart sensors and

intuitive KOR interface software.
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Figure G-7: Effect of data “cleaning” on quality of data. The lower left figure indicates the raw in-river (green) and pumped (black) data set.  The upper right indicates the 
corrected data set (blue line).  Note the removal of almost all spikes (Evan Baddock, NIWA). 
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Appendix H Installation of nitrate-sensors – ORC experience 
This material was kindly made available by Paul Hannah, Senior Environmental Officer (Hydrology), 

Otago Regional Council, Dunedin. 

Trios Nitrate draft ‘draft how to Guide’ 
 
Pre-install Calibration:  
The Trios nitrate probes are shipped pre-calibrated. No calibrations are required prior to installing in 

the field. Pre-determining the instream nitrate levels using grab samples are recommended. These 

results are used to determine the optimum optical path length (distance between lenses).  For rivers 

with very low baseline levels of nitrate the optical path length may need to be increased. Refer to 

manufacturer’s recommendations.  

Note: It is worth determining the path length prior to ordering as this will affect the brush width if 

using an after-market brush wiper.  

Installation (refer to Figure H-1 through Figure H-4) 
There are two main field installation methods for continuous water qual sensors, ‘in-river’ and ‘out-

of-river’ installations. An ‘in-river’ installation is self-explanatory, the sensor is installed submerged in 

a river. Out-of-river installations have higher power demands so are generally used where 240V is 

available. The sensor is located away from the river and a pump is used to deliver river water to the 

sensor housed inside a monitoring station hut. 

To date ORC has only installed Trios probes using the in-river installation method. Two methods of 

‘in-river’ mounting options have been used by ORC staff these are ‘shielded’ and ‘non-shielded’ 

mounting. There are pro’s and con’s to each in-river mounting technique as listed below: 

Non-shielded: 
▪ Pro’s: Most cost-effective mounting option as it requires little fabrication prior to 

install. In clear water the probe and wiper brush can be visually checked without 

disturbing the sensor. As the probe is more exposed to the river currents fine 

filamentous algae tends to get sloughed off before it accumulates to problem levels. 

An exposed sensor also provides less refuge space for aquatic organisms such as snails 

which can congregate in larger numbers inside a shield (such as a perforated pipe). 

This technique is better suited to locations positioned just out of the main flow such as 

a small side eddy. This helps to avoid a build-up of water born debris. When conditions 

are right, this mounting option has provided the longest duration of hands-free 

operation.  

▪ Con’s: The probe is most exposed to impact damage from water-borne debris when 

mounted in-river and unshielded. Sticks, roots and leaves can build up around the 

sensor and wiper arm. Debris can wedge within the optical path length and damage 

wiper brush mechanisms. Sensor more visible to the public and exposed to vandalism. 

Sensor removal can be more time consuming and problematic to access during high 

flows (depending on the mounting. 
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Shielded: 
▪ Pro’s: Shields intercept water borne debris better when mounted in the main current. 

Less exposed to vandalism. May get better life out of wiper mechanisms. Sensors 

mounted within a shield on a sliding mechanism are generally easier to remove for 

inspection and cleaning. 

▪ Con’s: The probe needs to be removed from the shield/pipe more regularly to inspect 

and remove biofouling of the shield. As a shield decreases the water velocity passing 

over the sensor, long filaments of algae can form which clog the optics that  brush and 

optics and require manual removal.  

Installing the sensor in a pipe with slots rather than holes at the “Shag at Craig road” site appears to 

have provided two benefits: 

▪ Less trapping of debris in the pipe that shields the sensor. 

▪ Reduced noise in the data. This may be due to the pipe slowing the velocity of water 

passing through the optical path which may in turn reduce suspended particle size(?) 

 

Field Cleaning 
Compressed air or Wiper options. To date ORC have only used an aftermarket wiper (Zebratech 

hydro-wiper) with reasonable results. The wiper drive gears are prone to shearing in the event debris 

such as sticks or gravel gets caught in the wiper arms path. On occasions small stones can get 

imbedded in the wiper brush which can in-turn score the sensor’s optical lense(s). If possible avoid 

areas where the sensor is likely to get buried during flood events as the brush will be unable to clear 

away small stones and damage do both the wiper mechanism and optics are likely. An alternative 

would be to disable the brush during high flows if practical. Additional sensor cleaning is 

recommended monthly using acetone and a non-abrasive cloth. The ABS-360 signal output is helpful 

as a surrogate measure of biofouling and/or the condition of the optical lenses. When this value is 

above 1, or if the ABS-360 value trends upwards over time (during settles stream/river flows) this 

may indicate the sensor needs additional cleaning. 

Installing the sensor in the pipe at Shag at Craig road appears to have reduced data noise. This may 

be due to the pipe slowing the velocity of water passing through the optical path which may in turn 

reduce suspended particle size?? 

Recommended depth of installation (in-river installation) 
The depth of water the sensor is installed at will vary depending on the depth of water available at 

each site. Any installation should have the ability to move the sensor up or down in the water column 

if it is to be deployed for any length of time. This will allow the technician to keep the sensor clear of 

any changes in the river bed level or adjust the sensor down if required during low river flows. To 

avoid damage to the sensors optics, avoid mounting the optics within 200mm of a mobile gravel river 

bed.  

240V v’s 12V systems 
ORC has only used 12V solar powered systems to run a telemetered nitrate sensor and wiper. Most 

installations consist of 80W of solar capacity and a 12V 60Ah battery. This power supply has not 

given issue through the last 3 Otago winters. 
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Data validation and QC 
ORC field hydrology staff currently quality assess and archive continuous nitrate data to a QC200 – 

non-verified standard. External checks are derived from lab analysed nitrate grab samples. Data 

irregularities and non-conformances are commented on, such as missing record and data affected by 

flood events.  

Grab samples  
Physical grab samples used to validate continuous nitrate data should be collected as close to the 

logged time period as possible and also as close to the Trios optics as practicable. This will help to 

ensure the grab sample ‘check’ value is representative. 

Installation in direct sunlight: 
Where possible avoid installation in direct sunlight (see manufacturer’s instructions). 

Wet-mateable connectors (cable plugs) are recommended for continuous water quality sensors and 

wipers. Being able to quickly un-plug a sensor head for maintenance or replacement is very 

beneficial.  
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Figure H-1: Example of a Trios probe mounting using scaffolding swivel clamps and 40GMP pipe. Probe is 
clamped in the water on the downstream side and is non-shielded. This non-shielded installation works when 
the probe is in the lee of willow trees, not in the direct current. When in the direct current too much debris will 
get caught around the sensor (Paul Hannah, ORC). 

 



 

Review of high frequency water quality data  171 

 

 

Figure H-2: Pipe installation at the Mill Creek at Lake Hayes Nitrate recording station. (Paul Hannah, ORC). 

G61 

 

Figure H-3: Example of mounting a Trios probe, wiper and conductivity probe to ‘sliders’ which keep the 
probes in position inside the 150mm PVC pressure pipe.  These sliders are cut from a thinner gauge PVC pipe 
of the same external diameter as the outer pipe (Paul Hannah, ORC). 
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Figure H-4: Intake slots cut into thick-walled 150mm PVC pressure pipe to facilitate water flow and 
exchange. Slots are being trailed instead of holes to reduce the likelihood of sticks and other debris being 
caught in the holes (Paul Hannah, ORC).  
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Appendix I Installation of nitrate-sensors – NIWA experience 
This material was originally shared at the NIWA workshop held in October 2018, and kindly made 

available by Evan Baddock, Principal Technician – Environmental Monitoring, NIWA South Island Field 

Teams, Dunedin. 

The figures that follow are associated with the “Mataura at Mataura Island” benchmark site 

operated by NIWA. 
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Appendix J Other TriOS deployment experiences 
Biomass build-up and cleaning requirements in a small, nutrient-rich stream. 
 

  

Figure J-1: TriOS deployment in Waikato region – left, detritus build-up within weeks of deployment, right 
wiper installed after cleaning. Unpublished work (Stan Lodge)  

 

Figure J-2: Effect of detritus and biomass on nitrate-N measurement – before wiper installed (left), after 
wiper installed and automatic cleaning commenced (centre), and manual cleaning plus wiper cleaning (right). 
Unpublished work.  

 


