Quantification of Source Loading Inputs for a Microbial Risk Assessment Tool

May 2020

Prepared for:

Abby Matthews Science & Innovation Manager

May 2020 Report No. 2020/EXT/1699 ISBN 978-1-99-000933-4

Prepared by:

The Institute of Environmental Science and Research Limited (ESR) Bronwyn Humphries, Louise Weaver, Megan Devane, and Sarah Coxon Client Report CSC20010

Prepared with support from Envirolink Large Advice Grant HZLC158

Kairanga	
Cor Pongotop and	

CONTACT 24 hr Freephone 0508 800 800

SERVICE Cnr Rongotea and Kairanga- Bunnythorpe Roads Palmerston North Palmerston North 11-15 Victoria Avenue Levin 120 - 122 Hōkio Beach Road Marton Hammond Street REGIONAL HOUSES Avenue DEPOTS Taihape Torere Road Ohotu Taumarunui 34 Maata Street Taumarunui 34 Maata Street Whanganui 181 Guyton Street Woodville 116 Vogel Street	SERVICE CENTRES	Kairanga Cnr Rongotea and Kairanga- Bunnythorpe Roads Palmerston North Marton Hammond Street Taumarunui 34 Maata Street	REGIONAL HOUSES	Palmerston North 11-15 Victoria Avenue Whanganui 181 Guyton Street	DEPOTS	Levin 120 - 122 Hōkio Beach Road Taihape Torere Road Ohotu Woodville 116 Vogel Street
---	--------------------	---	--------------------	--	--------	--

help@horizons.govt.nz

POSTAL Horizons Regional Council, Private Bag 11025, Manawatū Mail Centre, Palmerston ADDRESS North 4442

F 06 9522 929

www.horizons.govt.nz

Quantification of source loading inputs for a microbial risk assessment tool

May 2020

Prepared with support from Envirolink Large Advice Grant HZLC158

Prepared by:

Bronwyn Humphries, Louise Weaver, Megan Devane, and Sarah Coxon

PREPARED FOR:Horizons Regional Council, Environment Canterbury and
Hawkes Bay Regional CouncilCLIENT REPORT No:CSC20010REVIEWED BY:Murray Close

ACKNOWLEDGEMENTS

ESR wishes to thank Envirolink for funding this research under contract HZLC158 and Environment Canterbury, Horizons Regional Council and Hawkes Bay Regional Council for supporting the Envirolink funding application.

Manager

Wim Nijhof

Group Leader, Human & Ecological Health, Health & Environment Peer reviewer

mEClore

Murray Close

Manager, Groundwater, Human & Ecological Health, Health & Environment Authors

Bronwyn Humphries

Scientist

Louise tites

Louise Weaver

DISCLAIMER

The Institute of Environmental Science and Research Limited (ESR) has used all reasonable endeavours to ensure that the information contained in this client report is accurate. However, ESR does not give any express or implied warranty as to the completeness of the information contained in this client report or that it will be suitable for any purposes other than those specifically contemplated during the Project or agreed by ESR and the Client.

Quantification of source loading inputs for a microbial risk assessment tool INSTITUTE OF ENVIRONMENTAL SCIENCE AND RESEARCH LIMITED

CONTENTS

1.	INTRO	DUCTION	4
2.	METH	ODOLOGY	6
	2.1	LITERATURE REVIEW	.6
3.	RESU	LTS	8
	3.1	MULTIPLE DOMESTIC ON-SITE WASTEWATER TREATMENT SYSTEMS (OWMS)	. 8
	3.2	COMMUNITY SIZE ON-SITE WASTEWATER MANAGEMENT SYSTEMS	11
	3.3	DAIRY FARMING	11
	3.4	SHEEP AND BEEF FARMING	22
	3.5	WILDFOWL	29
	3.6	STORMWATER SYSTEMS	32
	3.7	STOCKYARDS	46
	3.8	ANIMAL EFFLUENT/MANURE APPLICATION TO LAND	47
RE	FERE	NCES	56

LIST OF TABLES

TABLE 1: KEY WORD SEARCH FOR THE VARIOUS LAND USES	6
TABLE 2: DOMESTIC ON-SITE WASTEWATER MANAGEMENT SYSTEMS (OWMS)MICROBIAL LOADING RATES	9
TABLE 3: DAIRY COW FARMING MICROBIAL LOADING RATES	. 12
TABLE 4: PREVALENCE DATA FOR NZ DAIRY CATTLE	. 17
TABLE 5: SHEEP (OVINE) FARMING MICROBIAL LOADING RATES	. 23
TABLE 6: PREVALENCE DATA FOR NZ SHEEP	. 25
TABLE 7: BEEF CATTLE FARMING MICROBIAL LOADING RATES	. 26
TABLE 8: PREVALENCE DATA FOR NZ BEEF CATTLE	. 28
TABLE 9: WILDFOWL MICROBIAL LOADING RATES	. 29
TABLE 10: CRYPTOSPORIDIUM PREVALENCE IN NZ WILDFOWL	. 31
TABLE 11: STORMWATER SYSTEMS MICROBIAL LOADING RATES	. 33
TABLE 12: INDIRECT SAMPLING OF STORMWATER MICROBIAL LOADING RATES	. 40
TABLE 13: PREVALENCE OF MICROORGANISMS IN STORMWATER	. 44
TABLE 14: ANIMAL EFFLUENT/MANURE APPLICATION TO LAND MICROBIAL LOADI RATES	NG . 48

1. INTRODUCTION

Transport of microbial pathogens is a potential risk from various land use activities, such as application of faecal waste to land, and domestic on-site wastewater treatment systems disposal fields. Risk to human health occurs when these wastes, containing pathogens, infiltrate into groundwater resources used for drinking water. In 2010, it was recognised that one particular land use, domestic septic tanks, posed a risk to the quality of groundwater. In response, the *Guidelines for Separation Distances Based on Virus Transport between On-site Domestic Wastewater Systems and Wells* was published (Moore et al., 2010). These guidelines considered appropriate setback distances from septic tanks in order to protect drinking water sourced from wells. The guidelines calculated separation distances for domestic on-site wastewater treatment systems based on virus transport and removal in the subsurface environment.

Since the release of the 2010 guidelines, increased awareness of other potential sources of microbial groundwater contamination, not just from on-site wastewater treatment systems, have become an issue worthy of consideration for many regional councils in New Zealand. Regional councils need to be able to assist consent planners and rural and peri-urban communities in making decisions about the management of a range of activities near drinking water supply wells. A microbial risk assessment tool is one such tool that could be used in this context, focusing on the risk to human health from drinking-water where microbial pathogens are discharged onto or into land near a drinking-water supply well. Some existing land use activities fall within designated drinking-water protection zones (often defined retrospectively after the activity commenced), which triggers the requirement for a resource consent. Councils need a defensible method to support any recommendations to grant or decline these consents based on quantitative risk modelling.

Environment Canterbury and other regional councils have applied for an EnviroLink Tools Grant to engage ESR and GNS to develop a microbial risk assessment tool. This tool proposes to determine the microbial risks associated with multiple land use practices such as:

- Multiple domestic on-site wastewater management systems (i.e. septic tanks)
- Community size on-site wastewater management systems
- Dairy farming

- Sheep and beef farming
- Wildfowl
- Stormwater systems
- Stockyards
- Animal effluent/manure application to land

The first step in developing this tool involves the collation and quantification of the source loading inputs for the modelling and ultimately the assessment tool. Environment Canterbury, Horizons Regional Council and Hawkes Bay Regional Council have applied for a Large EnviroLink Advice Grant to engage ESR to collate microbial loading rates and provide the concentrations of different pathogens in faecal matter from the above identified land use practices. The report provides truncated tables pertaining to the complete data collated on all the above sources.

2. METHODOLOGY

2.1 LITERATURE REVIEW

Four scientific bibliographic databases and search engines were searched, namely 'Web of Science', 'Science Direct', 'Pub Med', and 'Google'. Peer-reviewed journal articles, reports, technical notes and book chapters, that met the requirements for inclusion were included in the collation. Target publications were scientific journal articles, reports, technical notes and book chapters published in the last thirty years (1990–2020). Key word searches used are shown in Table 1 below.

Land use	Key words used in search
Multiple domestic On-site	- On*site wastewater management systems AND microbial
Wastewater Management	loading OR microbial concentration
Systems (OWMS)	- On*site wastewater disposal systems AND microbial
	loading OR microbial concentration
	- Septic tanks AND microbial loading OR microbial
	concentration
	- Small biological wastewater system AND microbial loading
	OR microbial concentration
	 Decentralised wastewater AND microbial concentrations
Community size On-site	As above plus:
Wastewater Management	- AND Marae
Systems	- AND school
	- AND camping ground
	- AND subdivision
Dairy farming	 Dairy cows AND Campylobacter
	 Dairy cows AND Cryptosporidium
	 Dairy cows AND Enterococci OR Enteroccus
	- Dairy cows AND Escherichia
	- Dairy cows AND pathogens
	- Dairy cows AND f*eces OR faeces
	- Dairy cows AND shedding
	- Dairy cows AND environmental loading OR f*ecal loading
Sheep and beef farming	- Sheep AND as above
	- Beet AND as above
	- Cattle AND as above
Wildfowl	- Canada geese AND as above
	- Ducks AND as above
	- Seagulis AND as above
	- Swans AND as above
Stormwater systems	- Stormwater AND microbial loading
	- 'Storm water' AND microbial loading
	- Stormwater AND Escherichia coli OR Campylobacter OR
	Salmonella OR enterococci OR Cryptosporidium OR
	Giardia
Stockyards	 Animal AND stockyard AND microbial loading

Table 1: Key word	d search fo	r the various	land uses.
-------------------	-------------	---------------	------------

	 Animal AND 'stockyard' OR 'holding pen' AND 'Escherichia coli' OR Campylobacter OR Salmonella OR enterococci OR Cryptosporidium OR Giardia
Animal effluent/manure application	 Farm dairy effluent AND microbial indicators OR faecal indicators OR <i>E. coli</i> OR pathogens FDE¹ AND microbial indicators OR faecal indicators OR <i>E. coli</i> OR pathogens Farm dairy effluent AND land application AND microbial loading

Well over 100 articles were identified and accepted for inclusion as meeting the following criteria:

- the article was written in English,
- the article was primarily concerned with the concentration of microbial or loading rates of indicators and/or pathogens sourced from one or more of the various land uses identified in Section 1, page 5,
- the article described microbial concentrations or loading rates from field studies.

These articles are listed in the bibliography at the end of this report.

¹ FDE: Farming Dairy Effluent

3. RESULTS

The following sections provide truncated tables of the results of the literature searches for microbial loading rates from various land uses.

3.1 MULTIPLE DOMESTIC ON-SITE WASTEWATER TREATMENT SYSTEMS (OWMS)

As in 2010, there remains a dearth of information concerning quantitative measured enteric virus concentrations within domestic On-site Wastewater Management Systems (OWMS) (Blaschke et al., 2016; Farnleitner et al., 2010; Canter and Knox, 1985). There is more data available for large centralised wastewater systems with regards to enteric virus concentrations (Dahling et al., 1989; Greening et al., 2000; Lodder and Husman, 2005). The enteric virus concentration data that is available for domestic OWMSs is largely variable compared to the data that is available for homogenised effluent from centralised treatment systems. This is because the concentrations within individual domestic OWMSs depend on whether there are infected people in the individual dwelling. When occupants of a household are unwell, the peak concentrations of those enteric viruses being shed into the OWMS will be much higher than a centralised wastewater facility, which offers dilution with non-contaminated wastewater (Blaschke et al., 2016). The literature review also found that microbial concentrations were typically sourced from a single OWMS not multiple. The microbial loading rates for domestic OWMSs are given in Table 2 below.

mestic On-s	site Wastewater Manager	nent Systems (OV	VMS) microbia	al loading rate	s (ordered by mi	croorganism)
Year of publication	Source	Microorganism	Concentration (min)	Concentration (max)	Concentration units	References
		Bacteroidales			gene copy concentration /	
2014	6 domestic OWMS's, Ireland	bacteria (BacHum)	8.23 x 10 ³	5.72 x 10 ⁴	50ml	Keegan et al., 2014
2015	North Carolina (Site 1)	Clostridium perfringens	3.00 x 10 ¹	7.00 x 10 ²	cfu/100 ml	Schneeberger et al., 2015
7		Clostridium	4 00 :: 407	· · · · · · · · · · · · · · · · · · ·	of	
2010	ואסו נוד כמו סוווומ (סונכ ב)	Coliphage (male-	1.00 \ 10	7. Z O Z T		שנווווכבשבוקבו ברמוי, בטבש
1998	1 High School OWMS	specific)	6.74 x 10 ⁵ *		Coliphage/L	DeBorde et al., 1998
1998	1 High School OWMS	Coliphage (somatic)	4.66 x 10 ⁵		Coliphage/L	DeBorde et al., 1998
2001	1 domestic OWMS, Rotorua	E. coli	1.20 x 10 ⁶		cfu/100 ml	Pang et al., 2004
2016	32 domestic OWMS's Scotland	E. coli	1.00 x 10 ³	1.00×10^{7}	mpn/100 mL	Richards et al., 2016
2015	North Carolina (Site 1)	E. coli	2.40 x 10 ³	9.80 x 10 ⁴	cfu/100 mL	Schneeberger et al., 2015
2015	North Carolina (Site 2)	E. coli	1.40×10^{4}	6.10 x 10 ⁵	cfu/100 mL	Schneeberger et al., 2015
2014	6 domestic OWMS's	E. coli	1.00 x 10 ⁵		mpn/100 mL	Keegan et al., 2014
2019	1 domestic OWMS, Lincoln	E. coli	9.03 x 10 ¹	2.87 x 10 ²	cfu/mL	Humphries et al., 2019
2001	1 domestic OWMS, Rotorua	E. coli	1.2 x 10 ⁶		cfu/100 mL	Pang et al., 2004
2015	North Carolina (Site 1)	Enterococci	1.70 x 10 ³	3.70 x 10 ⁵	cfu/100 ml	Schneeberger et al., 2015
2015	North Carolina (Site 2)	Enterococci	1.10×10^4	3.10 x 10 ⁶	cfu/100 ml	Schneeberger et al., 2015
2019	1 domestic OWMS, Lincoln	Enterococci	1.90×10^{1}	6.37 x 10 ²	cfu/ml	Humphries et al., 2019
1998	1 High School OWMS	Enterovirus	0.26	4.4	virus/L	DeBorde et al., 1998
2004	1 domestic OWMS, Rotorua	Faecal coliforms	2.30 x 10 ⁶		cfu/100 ml	Pang et al., 2004
2001	OWMS effluent, Rotorua	Faecal coliforms	4.00 x 10 ⁵		cfu/100 ml	Pang et al., 1996
1986	OWMS effluent	Faecal coliforms	2.30 x 10 ⁶	5.1 x 10 ⁶	cfu/100 mL	Sinton 1986
2010	3 domestic OWMS's, Florida	Fecal coliforms	1.20 × 10 ⁵	7.80 x 10 ⁶	cfu/100 ml	Katz et al., 2010
2011	1 commercial OWMS (restaurant), Wisconsin	Norovirus Gl	7.96 x 10 ⁴		genome copies/L	Borchardt et al., 2011
	Year of publication 2014 2015 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2017 2018 2019 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2011 1998 2001 2001 2001 2010 2010 2010 2010 2011	Year of publicationSource20146 domestic OWMS's, Ireland2015North Carolina (Site 1)2015North Carolina (Site 2)19981 High School OWMS20011 domestic OWMS's Scotland2015North Carolina (Site 1)201632 domestic OWMS's Scotland2017North Carolina (Site 1)2015North Carolina (Site 1)201632 domestic OWMS's Scotland20171 domestic OWMS's Scotland2018North Carolina (Site 1)20191 domestic OWMS, Rotorua20101 domestic OWMS, Scotland20111 domestic OWMS, Iincoln19981 High School OWMS20011 domestic OWMS, Rotorua20011 domestic OWMS, Rotorua20011 domestic OWMS, Rotorua20010WMS effluent, Rotorua1986OWMS effluent20103 domestic OWMS's, Florida20111 commercial OWMS1 commercial OWMS20111 commercial OWMS	Year of publicationSourceMicroorganism20146 domestic OWMS's, IrelandBacteroidales2015North Carolina (Site 1)Clostridium2015North Carolina (Site 1)perfrigens20161 High School OWMSColiphage (somatic)20171 domestic OWMS's, North Carolina (Site 2)perfrigens20181 High School OWMSSpecific)20191 domestic OWMS, RotoruaE. coli20111 domestic OWMS's ScotlandE. coli2013North Carolina (Site 1)E. coli20146 domestic OWMS's ScotlandE. coli2015North Carolina (Site 1)E. coli201632 domestic OWMS's ScotlandE. coli2017North Carolina (Site 1)E. coli2018North Carolina (Site 1)E. coli20191 domestic OWMS, RotoruaE. coli20111 domestic OWMS, NotoruaEnterococci2013North Carolina (Site 1)Enterococci20141 domestic OWMS, NotoruaFaecal coliforms2015North Carolina (Site 1)Enterococci20161 domestic OWMS, NotoruaFaecal coliforms2017North Carolina (Site 2)Enterococci20181 domestic OWMS, NotoruaFaecal coliforms20191 domestic OWMS, NotoruaFaecal coliforms20100WMS effluentFaecal coliforms1986OWMS effluentFaecal coliforms10003 domestic OWMS's, FloridaFecal coliforms20103 d	mestic On-site Wastewater Management Systems (OWMS) microbi Year of publication Source Microorganism Concentration (min) 2014 6 domestic OWMS's, Ireland Bacteroidales 8.23 x 10 ³ 2015 North Carolina (Site 1) Definigens 3.00 x 10 ¹ 2015 North Carolina (Site 1) Definigens 3.00 x 10 ¹ 2016 3.00 x 10 ¹ Colstridium 3.00 x 10 ¹ 2016 North Carolina (Site 2) Definigens 1.00 x 10 ³ 2016 3.20 domestic OWMS, Rotorua E. coli 1.20 x 10 ⁵ 2015 North Carolina (Site 2) E. coli 1.00 x 10 ³ 2016 3.20 domestic OWMS's Scotland E. coli 1.20 x 10 ⁵ 2015 North Carolina (Site 2) E. coli 1.40 x 10 ⁴ 2016 1 domestic OWMS's Cotorua E. coli 1.20 x 10 ⁵ 2017 1 domestic OWMS's Notorua E. coli 1.20 x 10 ⁵ 2018 North Carolina (Site 2) Enterococci 1.30 x 10 ⁵ 2010 OWMS effluent, Rotorua Faecal coliforms <t< td=""><td>Impestic On-site Wastewater Management Systems (OWMS) nitrobial loading ratever of publicationSourceMicroorganismConcentration (min)Concentration (max)20146 domestic OWMS's, IrelandBacteria (BacHum)$8.23 \times 10^3$$5.72 \times 10^4$2015North Carolina (Site 1)perfringens$3.00 \times 10^2$$7.00 \times 10^2$2016North Carolina (Site 2)perfringens$3.00 \times 10^2$$4.20 \times 10^4$2017North Carolina (Site 2)perfringens$3.00 \times 10^2$$4.20 \times 10^4$20181 High School OWMSSpecific)$1.00 \times 10^2$$4.20 \times 10^4$20191 domestic OWMS's ScotlandE. coli$1.00 \times 10^3$$9.80 \times 10^4$20111 domestic OWMS's ScotlandE. coli$1.00 \times 10^5$$2.87 \times 10^4$2015North Carolina (Site 2)E. coli$1.00 \times 10^5$$2.87 \times 10^4$2016North Carolina (Site 2)E. coli$1.20 \times 10^6$$3.00 \times 10^5$2015North Carolina (Site 2)E. coli$1.00 \times 10^5$$2.87 \times 10^4$20161 domestic OWMS, IncolnE. coli$1.20 \times 10^6$$3.10 \times 10^6$20171 domestic OWMS, NotoruaE. coli$1.00 \times 10^5$$3.10 \times 10^6$2018North Carolina (Site 2)Enterococci$1.10 \times 10^4$$3.10 \times 10^6$20191 domestic OWMS, NotoruaFaceal coliforms$2.30 \times 10^6$$3.10 \times 10^6$2010OWMS effluentFaceal coliforms$2.30 \times 10^6$$5.1 \times 10^6$20103 domestic OWMS's,</td><td>Impestic VINS) microbial loading rates (ordered by microbial loading rates (ordered by microbials concentration (min) Concentration (min) Concentration (min) Concentration (min) Concentration (min) Rene copy (min) 2014 6 domestic OWMS's, Ireland Bacteriolales (bacterial (Bachlum) 8.23 x 10) 5.72 x 10' Sometration (min) Sometration (min) Beteriolales (man) Beteriolales (man) Beteriolales (man) Beteriolales (man) Beteriolales (man) Sometration (min) Sometration (min) Beteriolales (man) Beteriolales (man)</td></t<>	Impestic On-site Wastewater Management Systems (OWMS) nitrobial loading ratever of publicationSourceMicroorganismConcentration (min)Concentration (max)20146 domestic OWMS's, IrelandBacteria (BacHum) 8.23×10^3 5.72×10^4 2015North Carolina (Site 1)perfringens 3.00×10^2 7.00×10^2 2016North Carolina (Site 2)perfringens 3.00×10^2 4.20×10^4 2017North Carolina (Site 2)perfringens 3.00×10^2 4.20×10^4 20181 High School OWMSSpecific) 1.00×10^2 4.20×10^4 20191 domestic OWMS's ScotlandE. coli 1.00×10^3 9.80×10^4 20111 domestic OWMS's ScotlandE. coli 1.00×10^5 2.87×10^4 2015North Carolina (Site 2)E. coli 1.00×10^5 2.87×10^4 2016North Carolina (Site 2)E. coli 1.20×10^6 3.00×10^5 2015North Carolina (Site 2)E. coli 1.00×10^5 2.87×10^4 20161 domestic OWMS, IncolnE. coli 1.20×10^6 3.10×10^6 20171 domestic OWMS, NotoruaE. coli 1.00×10^5 3.10×10^6 2018North Carolina (Site 2)Enterococci 1.10×10^4 3.10×10^6 20191 domestic OWMS, NotoruaFaceal coliforms 2.30×10^6 3.10×10^6 2010OWMS effluentFaceal coliforms 2.30×10^6 5.1×10^6 20103 domestic OWMS's,	Impestic VINS) microbial loading rates (ordered by microbial loading rates (ordered by microbials concentration (min) Concentration (min) Concentration (min) Concentration (min) Concentration (min) Rene copy (min) 2014 6 domestic OWMS's, Ireland Bacteriolales (bacterial (Bachlum) 8.23 x 10) 5.72 x 10' Sometration (min) Sometration (min) Beteriolales (man) Beteriolales (man) Beteriolales (man) Beteriolales (man) Beteriolales (man) Sometration (min) Sometration (min) Beteriolales (man) Beteriolales (man)

9

Country of	Year of publication	Course	Microorganism	Concentration	Concentration	Concentration units	
100	0000			1 60 105			
USA	2020	3 domestic Uwivis s		7.7 X 20-7	7.94 X TO,	genome copies/L	Janah et al., 2020
ZN	2019	1 domestic OWMS, Lincoln	phage	1.67 x 10 ¹	1.32 x 10 ²	pfu/ml	Humphries et al., 2019
			phage (MS2 F-RNA				
NZ	2004	1 domestic OWMS, Rotorua	phage)	1.01 x 10 ⁶		pfu/100ml	Pang et al., 2004
			Thermotolerant				
Australia	2005	38 domestic OWMS's Australia	coliforms	1.00×10^{6}		cfu/100 ml	Charles et al., 2005
Scotland	2016	32 domestic OWMS's, Scotland	Total coliforms	1.00×10^{3}	1.00×10^{8}	mpn/100 ml	Richards et al., 2016
		6 domestic OWMS's, Ireland					
Ireland	2014		Total coliforms	1.00×10^{6}	1.00 x 10 ⁶	mpn/100 ml	Keegan et al., 2014
* Averaged res	<u></u>						

3.2 COMMUNITY SIZE ON-SITE WASTEWATER MANAGEMENT SYSTEMS

As mentioned in Section 3.1 there is more data available for large centralised wastewater systems with regards to enteric virus concentrations than an individual OWMS (Dahling et al., 1989; Greening et al., 2000; Lodder and Husman, 2005). The same can be said for community size on-site wastewater management systems. For the purpose of this report, community size systems included schools, marae, camping grounds and small subdivisions. The review of the literature revealed no additional microbial loading rates other than what is presented in Table 2 above.

3.3 DAIRY FARMING

Results for dairy farming microbial counts and loading rates are generally presented as outputs per animal per day. The loading rates calculated in this report account for the prevalence observed in animals during each study. A truncated table of the data collated is presented in Table 3 below. Further tables showing the prevalence during each study is provided in Table 4 below. Where there was little information on concentrations of microbes in NZ faecal samples, international studies were used alongside NZ prevalence data to generate loading rates. In addition, prevalence data can help to inform priority research on pathogen concentrations in NZ animals with high prevalence.

			7.4 x 10 ⁶			40			All seasons		
			5.1×10^{7}			10			Winter		
			4.4 x 10 ⁵			10			Autumn		
			2.4 x 10 ⁵			10			Summer		
Moriarty et al. (2008)	MPN/g		1.0×10^{8}		Campylobacter	10		Southland	Spring		
			2.9×10^{8}			35			All seasons		
			2.4 x 10 ⁵			л			Winter		
			3.8 x 10 ⁷			10			Autumn		
			1.0×10^{9}			10			Summer		
Moriarty et al. (2008)	MPN/g		3.6 x 10 ⁹		Campylobacter	10		Canterbury	Spring		
			4.4 x 10 ⁵			40			All seasons		
			2.4 x 10 ⁵			10			Winter		
			2.4 x 10 ⁵			10			Autumn		
			1.5×10^{6}			10			Summer		
Moriarty et al. (2008)	MPN/g		7.6 x 10 ⁷		Campylobacter	10		Manawatu	Spring		
			3.8×10^{6}			40			All seasons		
			8.4 x 10 ⁵			10			Winter		
			6.8×10^{6}			10			Autumn		
			2.4 x 10 ⁵			10			Summer		
Moriarty et al. (2008)	MPN/g		4.8×10^{8}		Campylobacter	10		Waikato	Spring		
			6.8×10^{6}			155			All seasons		
			2.4 x 10 ⁵			35			Winter		
			3.6×10^{6}			40			Autumn		
			1.1×10^{6}			40			Summer		
								provinces)			
Moriarty et al. (2008)	MPN/g		3. x 10 ⁸		Campylobacter	40	Adult	National data (All 4	Spring	2008	NZ
	concentration	(max)	rate	rates (min)		per study			U year	publication	
Veletetices		Loading	Iviedii	Luguing	ואווכרססוצפוווצווו	Annuals/samples		vegion	of upper	redi Ul	country
Deference	I mits for	- opding	N005	Incoding	Microconsism	A nimals / samples	Douino Courso	Docion	Concon /timo	Voorof	Country

Table 3: Dairy Cow farming microbial loading rates (ordered by microorganism)

USA 2008 Denmark 2002
August to October
Texas Southern Jutland
Adult Adult steers
4 18 107
Campylobacter Campylobacter jejuni Campylobacter
4.0 x 10 ⁵ 5.1 x 10 ⁷ 2.6 x 10 ⁸
CFU/mL CFU/g
Krueger et al. (20 Neilsen (2002)

			NZ		NZ	Canada	Japan	Spain	N N Z Z	Country of origin
			2008		2008	1999	2000	2007	2008 2005	Year of publication
Autumn Winter All seasons Spring	Summer Autumn Winter All seasons Spring	summer autumn winter all seasons Spring	spring	Winter	Winter Winter	March Spring- Summer	Season June to		All seasons Spring	Season/time of year
Canterbury	Waikato Manawatu	Waikato	National data (All 4 provinces)		Hamilton	prefecture Lethbridge, Alberta	New York Hyogo	Galicia NorthWestSpain	Four districts* Manawatu	Region
			Adult	>	Adult	Calf 1-120 days	call - 4 to zi days old Calf <30 days	Adult	Adult Calf-new born	Bovine Source
10 10	10 0 0 10 10 0 0 0 0	40 35 155	40 1	48	48 48	20	30 470	379	155 156	Animals/samples per study
E. coli	E. coli	E. coli	E. coli	2	E. coli	parvum Cryptosporidium	cryptosporialium parvum Cryptosporidium	parvum Cryptosporidium parvum	Cryptosporidium Cryptosporidium	Microorganism
					2.32 x 10 ⁶ 5.38 x 10 ⁴	10 ⁹ 0.0 × 10 ⁰	3.72 x	10 ⁰ 3.2 × 10 ³	1.29 x 10 ³ 0.00 x	Loading rates (min)
1.5 × 10 ⁹ 7.5 × 10 ⁹ 9.2 × 10 ⁸ 2.3 × 10 ⁹ 3.2 × 10 ⁸	5.5 x 10 ⁹ 6.8 x 10 ⁹ 2.7 x 10 ¹⁰ 1.3 x 10 ¹⁰ 7.7 x 10 ⁹	$2.3 \times 10^9 2.9 \times 10^9 2.7 \times 10^8 2.0 \times 10^9 3.2 \times 10^{10} 3.2 \times 10^{10} $	1.9 x 10 ⁹	3.1 x 10 ⁸ 8.7 x 10 ⁷	4.8 x 10 ⁷ 1.4 x 10 ⁷	1011	5.09 x 10 ^{0¥} 6.00 x	1.2 x 10 ⁵		Mean Ioading rate
					1.7 x 10 ⁹ 8.1 x 10 ⁸	10 ¹² 2.0 × 10 ⁹	1.1 x	7.46 x 10⁵	3.2 × 10 ⁴ 5.2 × 10 ⁹	Loading rates (max)
MPN/g	MPN/g	MPN/g	MPN/g		MPN/g	Oocysts/g	Oocysts/g	Oocysts/g	Oocysts/g Oocysts/g	Units for faecal concentration
Moriarty et al. (2008)	Moriarty et al. (2008)	Moriarty et al. (2008)	Moriarty et al. (2008)		Donnison et al. (2008)	O' Handley et al. (1999)	Uga et al. (2000)	Castro-Hermida et al. (2007)	Moriarty et al. (2008) Grinberg et al. (2005)	References

Country	Year of	Season/time	Region	Bovine Source	Animals/samples	Microorganism	Loading	Mean	Loading	Units for	References
ot origin	publication	ot year			per study		rates (min)	rate	rates (max)	taecal concentration	
		Autumn			10			6.4 x 10 ⁷			
		Winter			л			3.7 x 10 ⁷			
		All seasons			35			8.1 x 10 ⁶			
		Spring	Southland		10	Enterococci		3.3 x 10 ⁶		MPN/g	Moriarty et al. (2008)
		Summer			10			6.7 x 10 ⁶			
		Autumn			10			6.9 x 10 ⁷			
		Winter			10			3.0 x 10 ⁷			
		All seasons			40			2.6 x 10 ⁷			
NZ	2008	All seasons	Four provinces*	Adult	155	Giardia	1.12 x 10 ³		1.9 x 10 ⁴	Cysts/g	Moriarty et al. (2008)
Spain	2007		Galicia	Adult	379	Giardia	6.0 x 10 ³	6.9 x 10 ⁴	1.21 x	Cysts/g	Castro-Hermida et al.
			NorthWestSpain						10^{6}		(2007)
Australia	2000	Summer	Western	Calf- 14 days to	36	Giardia		9.7 x 10 ^{5‡}			O'Handley et al. (2000)
			Australia	70 days		duodenalis					
Canada	2000	Autumn	Lethbridge,	Calf- 14 days to	28	Giardia		4.0 x 10 ^{6‡}			O'Handley et al. (2000)
			Alberta	70 days		duodenalis					
Canada	1999	Spring-	Lethbridge,	Calf 1-120 days	20	Giardia	0.0 x 10 ⁰	1.3 x 10 ^{6‡}	2.0 x 10 ⁹		O'Handley et al. (1999)
		Summer	Alberta			duodenalis					
ZN	2008	all seasons	National data	adult	155	Salmonella€		0.0 x 10 ⁰		CFU/g	Moriarty et al. (2008)
		all seasons	Waikato					0.0 x 10 ⁰			
		all seasons	Manawatu					0.0×10^{0}			
		all seasons	Canterbury					0.0 x 10 ⁰			
		all seasons	Southland					0.0 x 10 ⁰			
NZ	2005	Spring	Manawatu	Calves-new born	156	Salmonella		0.00 x 10 ⁰		CFU/g	Grinberg et al. (2005)
* Manawat [¥] Loading ra **STEC Shi	u and Waikato te between da ga-toxin produ) positive for <i>Cr</i> ys 6 and 12 inc cing <i>Escherichi</i>	<i>yptosporidium</i> and Iusive (taken direct a coli	not detected in C: ly from scientific a	anterbury and Sou irticle)	thland					

Year of paper	Region	Dairy cow Source	Age of animal	Microorganism	Animal Prevalence	Farm prevalence	Number of animals/samples	Reference
2015	North island (5 regions) and South Island (2 regions)	Calf	1-5 day old	Bovine Rotavirus	20.0%		429	Al Mawley et al. (2015a&b)
			9-21 day old		19.8%		797	
2015	North island (5 regions) and South Island (2 regions)	Calf	1-5 day old	Bovine Coronavirus	5.3%		429	Al Mawley et al. (2015a&b)
			9-21 day old		6.1%		797	
2012	Canterbury	Calf	<3 months old	Cryptosporidium parvum	3%		80	Abeywardena et al. (2012)
			3-15 months old	Cryptosporidium parvum	1%		100	
			<3 months old	Cryptosporidium hominis	10%		80	
			3-15 months old	Cryptosporidium hominis	4%		100	
2015	North island (5 regions) and South Island (2 regions)	Calf	1-5 day old	Cryptosporidium parvum	5.8%		429	Al Mawley et al. (2015a&b)
			9-21 day old		15.8%		797	
2003	Waikato	Adult		Cryptosporidium parvum	0.6%		354	Learmonth et al. (2003)
		Calf			10.9%		304	

from O'Handley et al. (1999) for Giardia make an assumption of 100% prevalence because all calves tested positive for Giardia cyst shedding at some time point within the and Cryptosporidium as 100 % of calves tested from birth to 4 months carried Cryptosporidium and /or Giardia at some point in the longitudinal study. The loading rates

[‡] reported as cysts/calf/over the period day 14 to day 70. O'Handley et al. (2000) noted that single faecal sample of a calf at a specific time underestimates rates of *Giardia*

[€]Note the NZ studies by Al Mawley et al. (2015a &b) which identify Salmonella in dairy calves (Table 3b).

120-day period of the study. This study makes some useful observations about shedding rates.

						2018								2018		2015	2012	Year of paper
Northland								Northland, Waikato, Taranaki, Manawatu- Wellington, Canterbury, Southland		North island (5 regions) and South Island (2 regions)		Region						
						Calf								Calf		Calf	Bobby calf	Dairy cow Source
						2-21 days								2-21 days	9-21 day old	1-5 day old		Age of animal
STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC O26	STEC 0157	STEC E. coli- Any'''Top 7" STEC	STEC 0111	STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC 026	STEC 0157	STEC* E. coli- Any"'Top 7" STEC		Enterotoxigenic E. coli (K99)	E. coli 0157	Microorganism
0%	35%	8%	18%	0%	1%	44%	0.2%	0.0%	9.8%	5.0%	2.9%	7.2%	1.9%	20.3%	Not tested	3.2%	18%	Animal Prevalence
0%	80%	50%	60%	0%	10%	100%	0.6%	0%	43%	35%	18%	23%	15%	75%			24%	Farm prevalence
15	15	15	15	15	15	15	1508	1508	1508	1508	1508	1508	1508	1508	·	429	309	Number of animals/samples
						Browne et al. (2018)								Browne et al. (2018)		Al Mawley et al. (2015a&b)	Irshad et al. (2012)	Reference

				2018							2018							2018	Year of paper
Manawatu-Wellington	Manawatu-Wellington	Manawatu-Wellington	Manawatu-Wellington	Manawatu-Wellington	Taranaki	Taranaki	Taranaki	Taranaki	Taranaki	Taranaki	Taranaki	Waikato	Waikato	Waikato	Waikato	Waikato	Waikato	Waikato	Region
				Calf							Calf							Calf	Dairy cow Source
				2-21 days							2-21 days							2-21 days	Age of animal
STEC 0103	STEC 045	STEC 026	STEC 0157	STEC E. coli- Any'''Top 7" STEC	STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC 026	STEC 0157	STEC E. coli- Any"'Top 7" STEC	STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC 026	STEC 0157	STEC E. coli- Any'''Top 7" STEC	Microorganism
7%	2%	3%	9%	21%	0%	8%	2%	0%	9%	0%	15%	0%	6%	6%	1%	6%	2%	15%	Animal Prevalence
42%	33%	8%	50%	83%	0%	32%	16%	0%	32%	0%	58%	0%	37%	40%	9%	11%	17%	66%	Farm prevalence
15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	Number of animals/samples
				Browne et al. (2018)							Browne et al. (2018)							Browne et al. (2018)	Reference

		2006							2018							2018			Year of paper
			Southland	Canterbury	Manawatu-Wellington	Manawatu-Wellington	Region												
		Adult							Calf							Calf			Dairy cow Source
									2-21 days							2-21 days			Age of animal
STEC E. coli-stx1 + stx2 genes	STEC E. coli-stx2 gene	STEC <i>E. coli-</i> stx1 gene	STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC 026	STEC 0157	STEC E. coli- Any"'Top 7" STEC	STEC 0121	STEC 0145	STEC 0103	STEC 045	STEC 026	STEC 0157	STEC E. coli- Any"'Top 7" STEC	STEC 0121	STEC 0145	Microorganism
0.0%	6%	4%	0%	9%	7%	2%	14%	8%	26%	0%	7%	3%	2%	11%	1%	18%	0%	7%	Animal Prevalence
			0%	50%	42%	25%	50%	1%	92%	0%	43%	29%	14%	43%	7%	79%	0%	42%	Farm prevalence
72	72	72	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	Number of animals/samples
		Cookson et al. (2006)							Browne et al. (2018)							Browne et al. (2018)			Reference

Year of	Region	Dairy cow	Age of animal	Microorganism	Animal	Farm	Number of	Reference
1				STEC E. coli-stx1 +eae gene	1.4%		72	
				STEC E. coli-stx2 + eae genes	0.0%		72	
				STEC E. coli-stx1 gene				
				STEC E. coli-stx2 gene				
				STEC E. coli-stx1 + stx2 genes				
2012	Canterbury	Calf	<3 months old	Giardia duodenalis Assemblage:** E (78%), A (22%)	11%		80	Abeywardena et al. (2012)
			3-15 months old	Giardia duodenalis Assemblage: E (100%)	2%		100	
2008		Calf - 3- 4months old		Giardia Assemblage: A (88%), B (12%)	31%		1170	Winkworth et al. (2008)
2003	Waikato	Adult		Giardia intestinalis	4.5%		354	Learmonth et al. (2003)
		Calf			10.5%		304	
2000		Calf - ≤8weeks old		Giardia Assemblage: A (73%), B (27%)	41%		700	Hunt et al. (2000)
2015	North island (5 regions) and South Island (2 regions)	Calf	1-5 day old	Salmonella	6.0%		429	Al Mawley et al. (2015a&b)
			9-21 day old		0.5%		797	
*STEC Shi _l ** <i>Giardic</i>	ga-toxin producing <i>Escherichia coli</i> 1 Genotype Assemblages A & B occur in	human infections	and are potentially	y zoonotic, whereas Assemblage E is n	on-zoonotic.			

3.4 SHEEP AND BEEF FARMING

Where there was little information on concentrations of microbes in NZ faecal samples, international studies were used alongside NZ prevalence data to generate loading rates. In addition, prevalence data helps to inform priority research on pathogen concentrations in NZ animals with high prevalence.

Table 5: She	ep (ovine)	farming microbial loa	ading rates (orde	red by micrc	organism). I	Loading rat	es are calculate	d per animal/day*
Country of origin	Year of publication	Ovine Source	Microorganism	Loading rates (min)	Median/Mean Ioading rate	Loading rates (max)	Units	References
Scotland	2009	adult	Campylobacter		7.5 x 10 ⁷			Ogden et al., 2009
ZN	2011	lambs	Campylobacter		4.0 x 10 ⁸		CFU/g	Moriarty et al., 2011
NZ	2011	≥1 year	Campylobacter		9.5 x 10 ⁵		MPN/g	Moriarty et al., 2011
Australia	2017	pre-slaughter at saleyards	Campylobacter	1.0×10^{7}	1.3 x 10 ⁸	5.64×10^{10}	organisms/g	Yang et al., 2017
Belgium	2008	lambs	Cryptosporidium	0.0 x 10 ⁰	1.3 x 10 ⁶	5.91 x 10 ⁷	oocysts/g	Geurden et al., 2008
Spain	2007	adult	Cryptosporidium parvum	6.4 x 10 ²	4.2 x 10 ³	4.09 x 10 ⁴	oocysts/g	Castro-Hermida et al., 2007
NZ	2011	lambs	Cryptosporidium		3.8 x 10 ⁶		oocysts/g	Moriarty et al., 2011
ZN	2011	lambs	E. coli		9.1×10^{11}		MPN/g	Moriarty et al., 2011
NZ	2011	≥1 year	E. coli		2.4 x 10 ¹⁰		MPN/g	Moriarty et al., 2011
Scotland	2005	adult	E. coli 0157	0.0×10^{0}	1.1 × 10 ⁷	1.46 x 10 ⁸	CFU/g	Ogden et al., 2005
Australia	2017	pre-slaughter at saleyards	<i>E. coli</i> 0157/0145	1.1×10^{6}	2.1 × 10 ⁷	1.64 x 10 ⁸	organisms/g	Yang et al., 2017
ZN	1997	adult	Enterococci		1.8 x 10 ⁷		CFU/g	Anderson et al., 1997
NZ	2011	lambs	Enterococci		2.2 x 10 ¹¹		MPN/g	Moriarty et al., 2011
NZ	2011	≥1 year	Enterococci		1.0×10^9		MPN/g	Moriarty et al., 2011

Yang et al., 2017	organisms/g	2.08 x 10 ⁹	4.3 x 10 ⁷	2.8 x 10 ⁶	Salmonella enterica	pre-slaughter at saleyards	2017	Australia
Castro-Hermid al., 2007	cysts/g	8.67 x 10 ⁵	9.3 x 10 ⁴	4.6 x 10 ³	Giardia duodenalis	adult	2007	Spain
Yang et al., 20:	cysts/g	1.65 x 10 ¹²	2.8 x 10 ⁷	2.2 x 10 ⁴	Giardia	pre-slaughter (29weeks)	2014	Australia
Yang et al., 202	cysts/g	3.55×10^{11}	3.1 x 10 ⁶	2.0 x 10 ⁴	Giardia	post-weaning (19weeks)	2014	Australia
Yang et al., 20:	cysts/g	3.10×10^{11}	4.1 x 10 ⁶	1.5 x 10 ⁴	Giardia	pre-weaning (12weeks)	2014	Australia
Moriarty et al.	cysts/g		1.6 x 10 ⁴		Giardia	lambs	2011	NZ
Geurden et al.	cysts/g	4.71 x 10 ⁷	1.8 x 10 ⁶	0.0 x 10 ⁰	Giardia	lambs	2008	Belgium
References	Units	Loading rates (max)	Median/Mean loading rate	Loading rates (min)	Microorganism	Ovine Source	Year of publication	Country of origin

* the numbers of samples/animals in each study are available from ESR.

Year of paper	Sheep Source	Microorganism	Prevalence	Number of sheep	Reference
2011	lambs	Salmonella	1.9%	105	Moriarty et al. (201
	lambs	STEC E. coli	3.8%	105	
	≥1 year	Salmonella	0.0%	220	
	≥1 year	STEC E. coli	0.9%	220	
	≥1 year	Cryptosporidium	3.6%	220	
2006	lambs(3-4months_old)	STEC <i>E. coli</i> -stx1 gene	48%	46	Cookson et al. (20
	lambs(3-4months_old)	STEC E. coli-stx2 gene	9%	46	
	lambs(3-4months_old)	STEC E. coli-stx1 + stx2 genes	17%	46	
	lambs(3-4months_old)	STEC <i>E. coli</i> -stx1 +eae gene	0%	46	
	lambs(3-4months_old)	STEC E. coli-stx2 + eae genes	0%	46	
	ewes	STEC E. coli-stx1 gene	56%	50	
	ewes	STEC <i>E. coli</i> -stx2 gene	18%	50	
	ewes	STEC E. coli-stx1 + stx2 genes	28%	50	
	ewes	STEC <i>E. coli</i> -stx1 +eae gene	4%	50	
	ewes	STEC E. coli-stx2 + eae genes	0%	50	

Table 6: Prevalence data for NZ sheep

Quantification	
o,	
ŝ	
ĕ	
Ξ	
8	
<u> </u>	
0	
a	
⊆.	
ũ	
0	
Ξ.	
ອ	
Ē,	
ß	
	-

	cysts/g	4./E+Ub		0.0 X 10°	Giaraia duodenalis	242	reedlot cattle in pens	6007	USA
Hoar et al., 2009 -	cysts/g	7.4E+07		0.0 x 10 ⁰	Giardia duodenalis	226	feedlot cattle in pens	2009	USA
Oates et al., 2012	cysts/g		7.70 x 10 ⁶		Giardia	201	beef cattle	2012	USA
	CFU/g	1.3E+11		0.0 x 10°	STEC E. coli Group 1 (stx1&/or stx2; and eae; and hly virulence genes	479	beef cattle	2004	Japan
	CFU/g	9.2E+11		0.0 x 10 ⁰	STEC <i>E. coli</i> (<i>stx</i> PCR positive)	479	beef cattle	2004	Japan
	CFU/g	3.9E+11		0.0 x 10 ⁰	STEC E. coli	605	beef cattle plus dairy	2004	Japan
Fukushima and Seki 2004	CFU/g	4.1 x 10 ¹⁰		4.1 x 10 ⁷	<i>E. coli</i> 0157:H7	479	beef cattle plus dairy	2004	Japan
Atwill et al., 2003	oocysts/g		3,900 to 9,200		Cryptosporidium parvum	240	beef cattle	2003	ASN
Oates et al., 2012	oocysts/g		3.00 × 10 ⁷		Cryptosporidium (subset = C. andersonii)	201	beef cattle	2012	USA
Krueger et al., 2008	CFU/mL		3.5 x 10 ⁸		Campylobacter jejuni	18	beef cattle	2008	USA
Ogden et al., 2009	CFU/g		1.6 x 10 ⁸		Campylobacter	474	beef cattle	2009	Scotland
Krueger et al., 2008	CFU/mL		4.0 x 10 ⁵		Campylobacter	4	beef cattle	2008	USA
Stanley et al., 1998	MPN/g		1.4 x 10 ⁷		<i>Campylobacter</i> (thermophilic)	360	beef cattle	1998	UK
References	Units	Loading rates (max)	Median/Mean loading rate	Loading rates (min)	Microorganism	Animals per study	Bovine Source	Year of paper	Country of origin

Table 7: Beef cattle farming microbial loading rates (ordered by microorganism). Loading rates are outputs per animal/day.

	2009	2009	2009	2009	2009	
-	feedlot cattle in pens					
	240	240	238	240	240	
	Giardia duodenalis					
	1.5 x 10 ⁷	1.0 x 10 ⁶	0.0 x 10 ⁰	5.5 x 10 ⁶	7.3 x 10 ⁵	
	2.2	8.0	1.2	1.3	6.7	
	2E+09)E+08	2E+08	LE+09	7E+06	
cysts/g		cysts/g	cysts/g	cysts/g	cysts/g	

Year of paper	Sheep Source	Microorganism	Prevalence	Number of	Reference
		0		cattle	:
2014	<7 day old bobby calves at slaughter	STEC E. coli (stx1, stx2, eae, ehxA genes)	2.7%	299	
		enteropathogenic (EPEC) E. coli	/07 C F	000	
		(eae, bfpA gene but stx negative)	12.4%	667	
		All <i>E. coli</i> (stx1_&/_stx2_&/_eae_&/_ehxA genes)	17.7%	299	
2006	weaned calves (3-4months_old)	STEC E. coli-stx1 gene	2%	91	
		STEC E. coli-stx2 gene	19%	91	
		STEC E. coli-stx1 + stx2 genes	0	91	
		STEC E. coli-stx1 +eae gene	14%	91	
		STEC E. coli-stx2 + eae genes	1%	91	
2006	Heifers (<12 months_old)	STEC E. coli-stx1 gene	0%	24	
		STEC E. coli-stx2 gene	38%	24	
		STEC E. coli-stx1 + stx2 genes	0%	24	
		STEC E. coli-stx1 +eae gene	13%	24	
		STEC E. coli-stx2 + eae genes	0%	24	

Table 8: Prevalence data for NZ beef cattle

Country of origin	Year of publication	Bovine Source	Animals per study	Microorganism	Loading rates (min)	Median/Mean loading rate	Loading rates (max)	Units	References
NZ	2011	Black swans	80	Campylobacter spp.		8.53 x 10 ⁴		MPN/g	Moriarty et al. (2011)
			80	E. coli		7.98 x 10 ⁸		MPN/g	
			80	Enterococci		4.59 x 10 ⁸		MPN/g	
			80	Salmonella sp.		0.00×10^{0}		MPN/g	
ZN	2011	Canada geese	80	Campylobacter spp.		1.21×10^{6}		MPN/g	Moriarty et al. (2011)
			80	E. coli		9.03 x 10 ⁶		MPN/g	
			80	Enterococci		6.25 x 10 ⁶		MPN/g	
			80	Salmonella sp.		0.00 x 10º		MPN/g	
Scotland	2009	Ducks	46	Campylobacter		1.8 x 10 ⁷		CFU/g	Ogden et al. (2009)
NZ	2011	Ducks	80	Campylobacter spp.		1.99×10^{4}		MPN/g	Moriarty et al. (2011)
		Ducks	80	E. coli		3.18×10^{10}		MPN/g	
USA	2003	Ducks	16	E. coli	1.60×10^{8}		3.40 x 10 ⁸	CFU/g	Haack et al. (2003)
NZ	2011	Ducks	80	Enterococci		3.39 x 10 ¹⁰		MPN/g	Moriarty et al. (2011)
NZ	2007	Ducks	2	Enterococci		1.14×10^{8}		CFU/g	Anderson et al. (1997
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ducks	13	Enterococci	5.60 x 10 ⁸		1.30 x 10 ⁹	CFU/g	Haack et al. (2003)

Where there was little information on concentrations of microbes in NZ faecal samples for particular wildfowl species, international studies were used alongside NZ prevalence data to generate loading rates. Prevalence data helps to inform priority research on pathogen concentrations in NZ wildfowl with high prevalence.

3.5 WILDFOWL

Quantification of source loading inputs

Ogden et al. (2009)	CFU/g		3.7 x 10 ⁴		Campylobacter	114	unknown avian species	2009	Scotland
Haack et al. (2003)	CFU/g		1.5 x 10 ¹¹		Enterococci	13	Pigeon	2003	USA
Haack et al. (2003)	CFU/g		1.4×10^{11}		E. coli	16	Pigeon	2003	USA
Ogden et al. (2009)	CFU/g		6.2 x 10 ⁵		Campylobacter	255	Pigeon	2009	Scotland
	cysts/g		2.37 x 10 ¹		Giardia	145	Gulls		
Oates et al. (2012)	oocysts/g		0.00×10^{0}		Cryptosporidium	145	Gulls	2012	USA
Moriarty et al. (2011)	MPN/g		0.00×10^{0}		Salmonella sp.	80	Gulls	2011	NZ
Haack et al. (2003)	CFU/g	1.30 x 10 ⁹		5.60 x 10 ⁸	Enterococci	13	Gulls	2003	USA
Anderson et al. (1997)	CFU/g		2.08 x 10 ⁵		Enterococci	2	Gulls	2007	NZ
Moriarty et al. (2011)	MPN/g		4.45 x 10 ⁸		Enterococci	80	Gulls	2011	NZ
Haack et al. (2003)	CFU/g	3.40 x 10 ⁸		1.60×10^{8}	E. coli	16	Gulls	2003	USA
	MPN/g		9.35 x 10 ⁸		E. coli	80	Gulls		
Moriarty et al. (2011)	MPN/g		3.83×10^4		Campylobacter spp.	80	Gulls	2011	NZ
Ogden et al. (2009)	CFU/g		1.1 x 10 ⁵		Campylobacter	216	Gulls	2009	Scotland
Ogden et al. (2009)	CFU/g		1.3 x 10 ⁷		Campylobacter	68	Geese	2009	Scotland
	CFU/g		1.2 x 10 ⁵		Enterococci	13	Geese		
Haack et al. (2003)	CFU/g		1.0×10^{6}		E. coli	16	Geese	2003	USA
Gould et al. (1978)			0.00×10^{0}		Salmonella sp.		Ducks	1978	England
Moriarty et al. (2011)	MPN/g		0.00×10^{0}		Salmonella sp.	80	Ducks	2011	NZ
	CFU/g		1.81 x 10 ¹⁰		faecal streptococci	unk	Ducks		
Gould et al. (1978)	CFU/g		1.11×10^{10}		faecal coliforms	unk	Ducks	1978	England
			2011	ot paper	Year				
-------	-------	--------------	------------------------	--------------	----------------------	--			
Gulls	Ducks	Canada geese	Black swans		Bovine Source				
80	80	80	80	per study	Animals				
			Cryptosporidium sp.		Microorganism				
0.0%	1.3%	5.0%	2.5%		Prevalence				
			Moriarty et al. (2011)		References				

1
ð
e
6
5
Z.
ž
š
0
Ž.
ž
3
ď
ā
Ŝ.
ē
Ž
ĕ
Ξ.
z
N
٤
Ē
fo
≦
$\overline{\mathbf{a}}$
ö
DO
ĕ
ŧ
at
ō
5
a
ລ
Z
¥
av
<u>a</u>
a
ğ
Ľ

3.6 STORMWATER SYSTEMS

occurring when precipitation is low (Huang et al. 2018). septage and animal faeces. Storm events have the potential to re-suspend sediment-bound faecal indicator bacteria (FIB) and pathogens back and agricultural runoff. Faecal contamination in stormwater is largely dependent on the land use in the catchment and mostly includes sewage. with stormwater runoff occurring primarily in winter and spring, and dry-weather runoff from irrigation of residential landscapes and car washing into the water column, resulting in elevated levels of contamination. Depending on the catchment, runoff can be expected to occur year-round Pathogens can be found in stormwater runoff and subsequently transported to environmental water bodies through sewer overflows, and urban

outfalls remain scarce, and the overall quality of stormwater in terms of microbial contaminants is poorly understood (Ahmed et al. 2019). surface waters due to stormwater runoff, combined sewer overflows (CSO) and sanitary sewer overflows (SSO) has been well documented AWQC 2008, Sidhu et al. 2012, Cizek et al. 2008, Steele et al. 2018). Nonetheless, data on pathogen abundance in stormwater runoff and High concentrations (>4 log₁₀ cfu/100 ml) of FIB are generally found in stormwater runoff and receiving waters, and a number of studies report Routine monitoring of stormwater quality focuses on quantification of E. coli and enterococcus. Rainfall-induced microbial contamination of the presence of enteric pathogens or faeces-associated genetic markers in stormwater (Jiang et al. 2015, Noble et al. 2006, Rajal et al. 2007

et al. 2019). For example, several studies have provided the percentage for positive samples for pathogens without giving quantitative numbers In general, concentrations of pathogens in stormwater are poorly reported and some data may not be useful to infer risk or for QMRA (Ahmed (Surbeck et al. 2006, Rajal et al. 2007, Sidhu et al, 2012, Bambic et al., 2015).

populated residential areas (McCarthy et al. 2006). Reports of high intra-event and inter-event variability, variation with season. Rural or high density residential areas are reported to contribute 30-50 times greater E. coli levels in stormwater compared with sparsely

inhibit qPCR and produce false negative or low results (Ahmed et al. 2019) Care with qPCR data - complex matrices such as stormwater may contain various organic substances, salts, acids, detergents etc that may

2018 indicated that few decay constants were available for protozoan and viral pathogens, with viruses having the greatest persistence Persistence of pathogens in stormwater compared with other matrices has not been well characterised. A systematic review by Bohem et al.

United States	South Korea	South Korea	South Korea	Australia	Australia	Australia	Country of origin				
2006	2006	2006	2006	2006	2016	2016	2016	2016	2016	2019	Year of publication
Combined sewer overflow	Combined sewer overflow	Combined sewer overflow	Combined sewer overflow	Combined sewer overflow	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Source
Urban - impervious commercial	Urban - urban 100%	Mixed - bare land/construction 30%, forest 35%, grassland 9%, urban 20%	Agriculture 56%, forest 18%, grassland 13%	Urban – residential	Urban – residential	Unknown	Catchment land use				
Cryptosporidium	Enterococcus	E. coli	Faecal coliforms	Total coliforms	E. coli	E. coli	E. coli	Campylobacter	E. coli	E. coli	Microorganism
											Arithmetic mean
								1.0×10^{1}	6.3 x 10 ⁴		Geometric mean
8.4E+01	1.9E+04	2.3E+04	3.4E+04	3.1E+05	1.0 x 10 ³	1.0 x 10 ³	3.2 x 10 ²	2.1 x 10 ⁰	1.0 x 10 ³	1.0 × 10 ⁴	Loading rates (min)
1.0E+02	2.6E+04	2.9E+04	3.7E+04	3.1E+06	1.0 x 10 ⁷	1.0 × 10 ⁶	3.2 x 10 ⁵	1.8 x 10 ²	1.6 x 10 ⁶	1.0 x 10 ⁷	Loading rates (max)
(00)cysts/100 L	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	Units
Arnone and Walling 2006	Paule- Mercado et al. 2016	Paule- Mercado et al. 2016	Paule- Mercado et al. 2016	Chandrasena et al. 2016	Chandrasena et al. 2016	Shen et al. 2019	References				

1
õ
Ð
2
St
P
ž
Va
te
ິ
Š
ť
Ξ
S
3
2
8
<u>a</u>
Ξ
a
đ
ß
2
īte
Ő
ģ
ğ
Ъ
ed
5
<
ŝŧ
ğ
Ş

| United States |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------|
| 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 | 2006 |
| Combined
sewer
overflow |
Urban - parks, residential	Urban - commercial/office	Urban - impervious commercial										
Giardia	Cryptosporidium	Enterococcus	E. coli	Faecal coliforms	Total coliforms	Giardia	Cryptosporidium	Enterococcus	E. coli	Faecal coliforms	Total coliforms	Giardia
2.0E+02	5.9E+01	1.1E+04	4.4E+04	8.8E+04	3.7E+05	1.5E+04	1.0E+02	3.8E+04	9.0E+02	3.3E+05	2.3E+06	4.2E+03
5.0E+02	7.5E+01	3.7E+04	7.0E+04	1.6E+05	4.2E+05	3.0E+04	1.0E+02	3.0E+05	5.3E+04	4.3E+05	5.7E+06	1.4E+04
(oo)cysts/100 L	(oo)cysts/100 L	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	(00)cysts/100 L	(oo)cysts/100 L	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	(oo)cysts/100 L
Arnone and Walling 2006												

USA	USA	USA	USA	United States	United States	United States	United States	United States	United States	United States	United States	United States
2009	2009	2009	2009	2007	2007	2007	2007	1998	1998	1998	1997	1997
Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater runoff	Stormwater runoff	Stormwater runoff	Stormwater runoff	Combined sewer overflow	Combined sewer overflow	Combined sewer overflow	Combined sewer overflow	Combined sewer overflow
Residential	Residential	Office park (buildings, parking, landscaping)	Office park (buildings, parking, landscaping)	Mixed urban, highway, natural, some agricultural								
E. coli	E. coli	E. coli	E. coli	Enterovirus (prevalence 0%)	Adenovirus (prevalence 0.02%)	E. coli	Total coliforms	Faecal coliforms	Cryptosporidium	Giardia	Cryptosporidium	Giardia
						316.2278	5.0E+03	3.8E+04	1.3E+04	6.1E+04		
2.4 x 10 ³	2.1 x 10 ³	6.6 x 10 ²	9.2 x 10 ²					2.7E+04	6.0E+03	3.5E+04	2.0E+03	2.9E+04
						1.6E+00	1.6E+01				0.0E+00	3.8E+04
						1.6E+05	1.3E+06				3.0E+03	1.1E+05
MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml			MPN/100 ml	MPN/100 ml	cfu/100ml	(oo)cysts/100 L	(oo)cysts/100 L	(oo)cysts/100 L	(oo)cysts/100 L
Hathaway et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009	Rajal et al. 2007	Rajal et al. 2007	Rajal et al. 2007	Rajal et al. 2007	Gibson et al. 1998	Gibson et al. 1998	Gibson et al. 1998	States et al. 1997	States et al. 1997

USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA
2018	2018	2018	2018	2018	2018	2009	2009	2009	2009	2009	2009	2009	2009
Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain
Urban - residential 62%,	Urban - residential 62%, roads 19%, open space 13%	Semi-rural; small village (250-1000 people)	Semi-rural; small village (250-1000 people)	Rural	Bus parking and overhead shelter	Bus parking and overhead shelter	Bus parking and overhead shelter	Municipal parking lot	Residential, incl school				
Campylobacter jejuni	Campylobacter sp	Adenovirus	Enterovirus	Norovirus (Gl and/or Gll)	Enterococcus	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli
	<i>p</i> .				10806.67	1.9 x 10 ³	7.9 x 10 ²	1.5 x 10 ³					
ъ				33.9	3760.247				1.8 x 10 ²	4.0 x 10 ⁰	3.6 x 10 ¹	2.4 x 10 ²	1.3 x 10 ³
						6.6 x 10 ²	6.0 x 10 ¹	2.2 x 10 ¹					
						>2419	1.8 x 10 ³	>2419					
gene copies/100 ml				gene copies/100 ml	cfu/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	MPN/100 ml
Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Kleinheinz et al. 2009	Kleinheinz et al. 2009	Kleinheinz et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009	Hathaway et al. 2009

USA	ASN	USA	USA	USA	USA	USA	USA	USA
2007	2007	2007	2018	2018	2018	2018	2018	2018
Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain
Urban - residential. Site is	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential 62%, roads 19%, open space 13%	roads 19%, open space 13% Urban - residential 62%, roads 19%, open space 13%				
Faecal coliforms	Faecal coliforms	Faecal coliforms	Canine MST	Avian MST	Human MST	Salmonella	Campylobacter lari	Campylobacter col
5248	3548	131		10806.67				
			33.9	3760.247	525.5		4.7	3.7
cfu/100 ml	cfu/100 ml	cfu/100 ml	gene copies/100 ml	cfu/100 ml	gene copies/100 ml		gene copies/100 ml	gene copies/100 ml
Brownell et al. 2007	Brownell et al. 2007	Brownell et al. 2007	Steele et al. 2018					

USA	USA	USA	USA	USA	USA	
2007	2007	2007	2007	2007	2007	
Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	Stormwater drain	
Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	located on a barrier island off Florida's west coast
Human marker enterococcal surface protein (esp) of Ent. faecium	Human marker enterococcal surface protein (esp) of Ent. faecium	Human marker enterococcal surface protein (esp) of Ent. faecium	Enterococcus	Enterococcus	Enterococcus	
ND	ND	ND	52481	16982	10000	
			cfu/100 ml	cfu/100 ml	cfu/100 ml	
Brownell et al. 2007						

USA	ASN	NSA
2007	2007	2007
Stormwater drain	Stormwater drain	Stormwater drain
Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast	Urban - residential. Site is located on a barrier island off Florida's west coast
Human polyomavirus	Human polyomavirus	Human polyomavirus
D	D	ND
Brownell et al. 2007	Brownell et al. 2007	Brownell et al. 2007

Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Country of origin
2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	Year of publication
Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Source
rural (cattle, horses, sheep)	medium density urban, some agriculture	medium density urban (residential and industrial)	low intensity urban, some agriculture	medium density urban (residential and industrial)	stormwater drain outlet from urban areas nearby; tidal influence	rural (cattle, horses, sheep)	medium density urban, some agriculture	medium density urban (residential and industrial)	low intensity urban, some agriculture	medium density urban (residential and industrial)	Catchment land use
enterococci	enterococci	enterococci	enterococci	enterococci	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	Microorganism (prevalence %)
5.0E+03	5.8E+03	2.7E+03	2.0E+03	5.0E+03	2.0E+03	2.5E+03	3.2E+03	1.0E+04	1.3E+04	2.3E+03	Arithmetic mean
											Geometric mean
11.2	3430	2230	1480	1900	5.3E+02	1.6E+03	4.6E+02	8.9E+03	8.4E+03	2.1E+02	Loading rates (min)
9930	8100	3110	2500	8000	3.4E+03	3.5E+03	6.0E+03	1.1E+04	1.8E+04	4.3E+03	Loading rates (max)
cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	Units
Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	References

Table 12: Indirect sampling of stormwater microbial loading rates (grouped by study).

Quantification of source loading inputs

United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	Australia
2018	2014	2014	2012	2012	2012	2012	2012	2012	2012	2012
Surface water	Constructed wetland	Constructed wetland	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creeks receiving storm event runoff	Creek receiving surface runoff
Urban - residential 20%, open space 41%, roads 8%, commercial and	Student housing development	Student housing development	high intensity urban with some forest	high intensity urban, with some forest	intermediate density, mix of urban and forest with some agriculture	intermediate density, mix of forest and urban with some agriculture	intermediate density, mix of forest, urban and agriculture	high intensity urban	low density development, mostly forest, some agriculture	stormwater drain outlet from urban areas nearby; tidal influence
Enterococcus	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	E. coli	enterococci
854.1429			1.1E+03	1.1E+03	4.0E+02	3.2E+02	5.2E+02	5.4E+02	1.5E+03	1.0E+04
300.8961	7.8E+02	1.0E+03								
										1930
										18400
cfu/100 ml	MPN/100 ml	MPN/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml	cfu/100 ml
Steele et al. 2018	Humphrey et al. 2014	Humphrey et al. 2014	Rowny and Stewart 2012	Rowny and Stewart 2012	Rowny and Stewart 2012	Rowny and Stewart 2012	Rowny and Stewart 2012	Rowny and Stewart 2012	Rowny and Stewart 2012	Sidhu et al. 2012

United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States	United States						
2008	2008	2008	2008	2008	2008	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	
As above	Tributaries receiving runoff	Surface water	Surface water	Surface water	Surface water	Surface water	Surface water	Surface water									
Wooded/forestry	Wetland	Wetland	Wetland	Wetland	Wetland	As above	As above	As above	As above	As above	As above	As above	industrial with low level agriculture in lower floodplain				
Faecal colifoms	Cryptosporidium	Giardia	Enterococci	E. coli	Faecal colifoms	Canine MST (83%)	Avian MST (100%)	Human MST (100%)	Salmonella (25%)	Campylobacter lari (78%)	Campylobacter coli (87%)	Campylobacter jejuni (17%)	Campylobacter spp. (1%)	Enterovirus (0%)	Adenovirus (22%)	Norovirus (Gl and/or GII) (96%)	
305	4.4	3.5	276	161	527												
								8.2E+01		1.9E+01	61.4	3.5				97.3	
CFU/100 ml	(oo)cysts/L	(oo)cysts/100 mL	CFU/100 ml	CFU/100 ml	CFU/100 ml			gene copies/100 ml		gene copies/100 ml	gene copies/100 ml	gene copies/100 ml				gene copies/100 ml	
Cizek et al. 2008	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018	Steele et al. 2018										

Country of origin	Year of publication	Source	Catchment land use	Microorganism	Prevalence	References
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	Adenovirus	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Low intensity urban, some agriculture	Adenovirus	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	Adenovirus	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban, some agriculture	Adenovirus	Present	Sidhu et al. 2012
• - -		- - -			Present	-
Australia	2012	Creek receiving surface runoff	Rural (cattle, horses, sheep) Stormwater drain outlet from urban	Adenovirus		Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	areas nearby; tidal influence	Adenovirus	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Low intensity urban, some agriculture	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban, some agriculture	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Rural (cattle, horses, sheep)	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Stormwater drain outlet from urban areas nearby; tidal influence	Campylobacter spp.	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	HF183 biomarker	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Low intensity urban, some agriculture	HF183 biomarker	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban (residential and industrial)	HF183 biomarker	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Medium density urban, some agriculture	HF183 biomarker	Present	Sidhu et al. 2012
Australia	2012	Creek receiving surface runoff	Rural (cattle, horses, sheep)	HF183 biomarker	Present	Sidhu et al. 2012

_
a
σ
e
<u> </u>
မ္
-
ž
e K
a
e
Z
R
č
Ч,
₹
Ĭ
¥
õ
¥
Ő
ar
Ĭ
ŝ
Su
<u> </u>
Ś
5
Ž
Ă
2
at
Ð
<u> </u>
S
4
ົດ
Ō
3
G
Ē.
<u>o</u>
2
ð
at
മ
Ž
ş
ھ
<
ail
a
σ
Ð
~
Ĭ
ğ
ň
e O
Ξ
Ş
Ì
<u>1</u>
<u>C</u>
2
ŏ
5
a
D,
S
З
$\overline{}$

Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia
2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012
Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff	Creek receiving surface runoff
Stormwater drain outlet from urban areas nearby; tidal influence	Rural (cattle, horses, sheep)	Medium density urban, some agriculture	Medium density urban (residential and industrial)	Low intensity urban, some agriculture	Medium density urban (residential and industrial)	Stormwater drain outlet from urban areas nearby; tidal influence	Rural (cattle, horses, sheep)	Medium density urban, some agriculture	Medium density urban (residential and industrial)	Low intensity urban, some agriculture	Medium density urban (residential and industrial)	Stormwater drain outlet from urban areas nearby; tidal influence
Salmonella enterica	Salmonella enterica	Salmonella enterica	Salmonella enterica	Salmonella enterica	Salmonella enterica	Polyomavirus	Polyomavirus	Polyomavirus	Polyomavirus	Polyomavirus	Polyomavirus	HF183 biomarker
Present	Absent	Present	Present	Present	Present	Absent	Present	Present	Present	Present	Present	Present
Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012	Sidhu et al. 2012

3.7 STOCKYARDS

Stockyards are premises wherein livestock are held or contained for a range of purposes, including sale, receipt, transport, exhibition, husbandry, weaning, and slaughter (Fotheringham 1995, Department of Water 2015). They may be temporary or permanent in nature, and used continuously or occasionally. They may differ significantly in size and scale, from small on-site or community pens, to slaughterhouses with capacity for more than 250-1000 head at a time (e.g. Kiermeier et al. 2006). The largest stockyard in the Southern Hemisphere is the Fielding Sale Yards in Manawatū, at 70,000 square meters. Thousands of head of cattle and sheep are sold each week, with the animals retained in permanent pens. Volume and management of effluent will differ between yards of different scale. Small or temporary systems may simply manually remove solid manure, while larger systems will likely dispose of wastes through a treatment system. For example, at the Fielding Sale Yards, all effluent deposited through the day is hosed down through a series of drains that connects to a sump, which in turn is connected to the Manawatū District Council waste stream and on to the treatment plant.

There was no specific information was found on the microbial loading from stockyards during the literature review. A loading rate however could be estimated using the loading rates from the various farmed animals detailed in this report, factoring in the capacity of stockyard, its function (short- or longer-term housing) and what, if any, waste treatment or management exists on site.

3.8 ANIMAL EFFLUENT/MANURE APPLICATION TO LAND

Sources of microorganisms from dairy farming include the diffuse discharge of Farming Dairy Effluent (FDE) to land. The on-farm dairy effluent is typically collected at the diary shed, stored in a holding facility (e.g. effluent storage pond) with no or several forms of treatment before its application to land via an irrigation system (i.e. travelling irrigator). Specific notes on animal effluent/manure application to land include:

- Travelling irrigators typically have high instantaneous rates of application, >100 mm/hr. Assuming the average depth of FDE is divided by the time for a complete pass, average application rate is approximately 20-30 mm/h.
- Low rate applicators apply at rates of <10mm/h therefore reduce the chance of exceeding the soils infiltration capacity, preventing ponding and surface runoff.
- Application of effluent should include consideration of soil type whether they exhibit overland flow or preferential flow risk, as well as the presence of any artificial preferential channels.
- Recommended that FDE management practices are matched with soil and landscape features in order to prevent direct losses of effluent contaminants.
- Application can be made at field capacity on well drained soils with little or no connection to surface water and that pose lowest risk for direct losses of applied effluents (high infiltration rate, high drainage fluxes, large degree of matrix flow)
 Deferred application not necessary but storage should be available to avoid application to saturated soils. Land slope should be less than 7 degrees.
- Deferred irrigation or storage capacity needed to allow for FDE to be applied at an average rate less than infiltration rate to prevent ponding in soils with impeded drainage or low infiltration.

FDE pond storage calculator measures farm-specific storage requirements using data including catchment rainfall, shed water use, number of cows, irrigation hardware and management and soil information.

Country of origin	Year of paper	Microorganism	FDE ² Median	FDE Geometric mean	FDE Arithmetic mean	FDE Min	FDE Max	FDE Units	Average microbial loading rate	Units	References
											Donnison et al.
ΝZ	2011	E. coli	8,600,000		8,600,000			MPN/100 ml			2011
ZN	2011	Campylobacter	9,300		55,000			MPN/100 ml			Donnison et al. 2011
									67,000,000		Donnison et al.
ZN	2011	E. coli	22,000		77,000			MPN/100 ml		<i>E. coli</i> /cow/day	2011
										<i>Campylobacter/</i> cow/d	
									860,000	аy	Donnison et al
NZ	2011	Campylobacter	200		1,000			MPN/100 ml			2011
NZ	2011	F coli						MPN/100 ml			Donnison et al. 2011
											Donnison et al.
NZ	2011	Campylobacter	6,000		36,000			MPN/100 ml			2011
ZN	2011	E. coli	140,000		190,000			MPN/100 ml			Donnison et al. 2011
NZ	2011	Campylobacter	93		1,700			MPN/100 ml			Donnison et al. 2011
NZ	2011	E. coli							300,000,000	<i>E. coli/</i> cow/day	Donnison et al. 2011
										<i>Campylobacter/</i> cow/d	
										ау	Donnison et al.
NZ	2011	Campylobacter							2,800,000		2011
² Farm Dai	ry Efflue	nt = FDE									

USA	USA	USA	USA	USA	USA	NZ		ZN		NZ	ZN	NZ	NZ	NZ		NZ		71	NZ		NZ		NZ	
2011	2011	2011	2011	2011	2011	2004		2001		1989	1989	1989	1989	2003		2003		2002	EUUC		2011		2011	
E. coli stx1	Campylobacter jejuni	C. perfringens	E. coli	Total Coliforms	Enterococci		Faecal coliform		Faecal coliform	Faecal coliforms	Total coliforms	Faecal coliforms	Total coliforms		Campylobacter		campyiopacter	Campulahactar		Campylobacter	Campylobacter		E. coli	
		640	1600	3100	300							70,000	80,000											
										49,000	70,000	40,000	57,000											
2000	4800	880	3500	5500	870		100000		910,000					100000		1000000		1000	1000					
<1200	<770	11	10	270	8.3																			
6300	27000	5000	13000	28000	4800																			
cells/ml (estimated by qPCR)	cells/ml (estimated by qPCR)	cfu/ml	MPN/ml	MPN/ml	MPN/ml		cfu/100ml	weight	MPN/g wet	MPN/100ml	MPN/100ml	MPN/100ml	MPN/100ml	MPN/100ml		MPN/100ml								
																					17,000		12,000,000	
																					аy	<i>Campylobacter</i> /cow/d	<i>E. coli/</i> cow/day	
Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012		McLeod et al. 2004	Roach et al. 2001		Hickey et al. 1989		Ross and Donnison 2003		2003	Doce and Donnicon	2003	Ross and Donnison	Donnison et al. 2011		Donnison et al. 2011				

USA		USA		USA		USA		USA	USA	USA	USA	USA		USA	USA		USA		USA		USA			USA	
2011		2011		2011		2011		2011	2011	2011	2011	2011		2011	2011		2011		2011		2011			2011	
monocytogenes	L.	E. coli eaeA		E. coli stx1		jejuni	Campylobacter	C. perfringens	E. coli	Total Coliforms	Enterococci	L. interrogans		Giardia spp.	spp.	Cryptosporidium	S. enterica		M. avium		monocytogenes	L.		E. coli eaeA	
								620	950	5000	530					~									
		3300		6800		2500		1100	3600	60000	1100						21000		2900		4000			2000	
		2400		3600		<770		4	4	380	5.2						3000		<16		1400			150	
ND		4200		0066		18000		6400	55000	17000000	7800	ND		ND	ND		83000		71000		6600			6300	
(PCR)	cells/ml (estimated by	(estimated by qPCR)	cells/ml	qPCR)	cells/ml (estimated by	qPCR)	cells/ml (estimated by	cfu/ml	MPN/ml	MPN/ml	MPN/ml	qPCR)	cells/ml (estimated by	cells/ml (estimated by qPCR)	qPCR)	cells/ml (estimated by	(esumated by qPCR)	cells/ml	qPCR)	cells/ml (estimated by	qPCR)	(estimated by	rells/ml	(estimated by aPCR)	cells/ml
Dungan et al. 2012		Dungan et al. 2012		Dungan et al. 2012		Dungan et al. 2012		Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012		Dungan et al. 2012	Dungan et al. 2012		Dungan et al. 2012		Dungan et al. 2012		Dungan et al. 2012		C	Dungan et al. 2012	

USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA	USA
2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
S. enterica	M. avium	L. monocytogenes	E. coli eaeA	E. coli stx1	Campylobacter jejuni	C. perfringens	E. coli	Total Coliforms	Enterococci	L. interrogans	Giardia spp.	Cryptosporidium spp.	S. enterica	M. avium
						360	4200	16000	810					
	220		140	1,000	3400	3100	17000	57000	1600					150
	<16		140	<1,200	<770	4	4	140	1.6					<16
ND	1400	ND	140	2,700	25000	55000	72000	430000	7400	ND	ND	ND	ND	1300
cells/ml (estimated by qPCR)	cfu/ml	MPN/ml	MPN/ml	MPN/ml	cells/ml (estimated by qPCR)									
Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012					

NZ	Z	NZ	NZ	Z		ZN	ZN	NZ		NZ	NZ	NZ	NZ	USA	USA	USA
2011	2011	2011	2011	2004		1996	1996	1996		1996	2003	2003	2003	2011	2011	2011
E. coli	E. coli	E. coli	E. coli		E. coli	Faecal coliforms	Faecal coliforms	Faecal coliforms		Faecal coliforms	E. coli	E. coli	E. coli	L. interrogans	Giardia spp.	Cryptosporidium spp.
											146	16,200	122,000			
		794	63,096	1,600,000		200	3000	100,000,000		20,000,000						
														ND	ND	ND
					cfu/100 ml	cfu/100ml	cfu/100ml	cfu/100ml		cfu/100ml	MPN/100 ml	MPN/100 ml	MPN/100 ml	cells/ml (estimated by qPCR)	cells/ml (estimated by qPCR)	cells/ml (estimated by qPCR)
1000000 (95 th percentile)	100000000 (95 th percentile)	1000000	100000000													
<i>E. coli/</i> ha/da	E. coli/ha/da	<i>E. coli/</i> ha/da	<i>E. coli/</i> ha/da													
Muirhead et al. 2011	Muirhead et al. 2011	Muirhead et al. 2011	Muirhead et al. 2011	Smith 2004	Monaghan and	Ledgard et al.1996	רבמפערמ בר עוידאסס		Ledgard et al.1996	reagara et al 1996	Craggs et al. 2003	Craggs et al. 2003	Craggs et al. 2003	Dungan et al. 2012	Dungan et al. 2012	Dungan et al. 2012

NZ	NZ	ZN	ZN	ZN	ZN	NZ	ZN	NZ	NZ	NZ	NZ	NZ	NZ		Canada	Canada	Canada	NZ	r T	NZ	NZ		
2010	2010	2010	2010	2010	2010	2010	1996	1996	1996	1996	1996	1996	2014		1982	1982	1982	2018	0107	2018	2019		
E. coli	Faecal coliforms	Total coliforms	Faecal coliforms	Total coliforms	Faecal coliforms	Total coliforms		E. coli	Faecal streptococci	Faecal coliforms	Total coliforms		E. coli			E. coli							
10,000	240,000	280,000	270,000	690,000	170,000	9,700	51,000	230,000	34,000	0.00063	350,000	250,000	2000	5,800,000	208,930	204,174	478,630	1,146,667	עטטע	181 333		247,718	
MPN/100 ml	<i>E. coli/</i> 100 ml	<i>E. coli/</i> 100 ml	<i>E. coli/</i> 100 ml	<i>E. coli/</i> 100 ml	<i>E. coli/</i> 100 ml	<i>E. coli/</i> 100 ml	000 13000000	MPN/100 ml	cfu/gram	cfu/gram	cfu/gram	cfu/100 ml		cfu /100 ml		cfu/100 ml							
Monaghan et al. 2010	Selvarajah 1996		McLeod et al. 2014	Culley and Phillips 1982	Culley and Phillips 1982	Culley and Phillips 1982		Wang et al. 2019	Waling et al. 2013		Cameron and Di 2019												

NZ	NZ	NZ	NZ	NZ	NZ	ZN	NZ	ZN	NZ	NZ
2011	2011	2011	2011	2011	2011	2011	2011	2011	2011	2011
E. coli										
2,300,000	97,000	18,000	140,000	500,000	2,400,000	910,000,000	960,000,000	240,000,000	10,000,000	4,000,000
MPN/100g	MPN/100g	MPN/100 ml	MPN/100g	MPN/100g	MPN/100g	MPN/100g	MPN/100g	MPN/100 ml	MPN/100g	MPN/100g
Houlbrooke et al. 2011b										

Concluding remarks

The report presents the truncated data for the key microbial species for the major land uses of concern in New Zealand. These will be used in the development of a Microbial Risk Assessment tool but will also be of great value and use for providing context regarding microbial contamination from various land uses. The data presented is up to date as at April 2020 and represents the past thirty years of studies and research. For further information on the extended data collated please contact ESR.

REFERENCES

Multiple domestic and community size OWMS

- Borchardt, M.A., Bradbury, K.R., Calvin, A.E., Kolberg, R.J., Alexander, S.C., Archer, J.R. *et al.* (2011). *Norovirus* outbreak caused by a new septic system in a dolomite aquifer. Groundwater 49: 85–97.
- DeBorde, D.C., Woessner, W.W., Lauerman, B. and Ball, P.N. (1998) Virus occurrence and transport in a school septic system and unconfined aquifer. Groundwater 36: 825-834.
- Humphries, B., Weaver, L., Burbery, L., Webber, J., Morgan, L. and Gregor, J. (2019) Microbial pathogen removal from domestic effluent using coral sand in Kiribati. Journal of Applied Microbiology. 128(4): 1208-1220.
- Keegan, M., Kilroy, K., Nolan, D., Dubber, D., Johnston, P.M., Misstear, B.D.R. *et al.* (2014). Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland. Water Science and Technology. 70: 634–641.
- Jahne, M.A., Brinkman, N.E., Keely, S.P., Zimmerman, B.D., Wheaton, E.A and Garland, J.L. (2020). Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Research 169: 115213. <u>https://doi.org/10.1016/j.watres.2019.115213</u>
- Pang, L., Close, M., Goltz, M., Sinton, L., Davies, H., Hall, C. Stanton, G (2004). Estimation of septic tank setback distances based on transport of *E. coli* and F-RNA phages. Environment International 29(7): 907-921.
- Richards, S., Paterson, E., Withers, P.J.A. and Stutter, M. (2016). Septic tank discharges as multi-pollutant hotspots in catchments. Science of the Total Environment. 542: 854–863.
- Schneeberger, C.L., O'Driscoll, M., Humphrey C., Henry, K., Deal, N., Seiber, K., Hill, V.R and Zarate-Bermudez, M (2015). Fate and transport of enteric microbes from septic systems in a coastal watershed. Journal of Environmental Health. 77(9): 22-30.

Dairy farming

- Abeywardena, H., Jex, A.R., Nolan, M.J., Haydon, S.R., Stevens, M.A., McAnulty, R.W. and Gasser, R.B. (2012). Genetic characterisation of *Cryptosporidium* and *Giardia* from dairy calves: Discovery of species/genotypes consistent with those found in humans. Infection Genetics and Evolution 12(8): 1984-1993.
- Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J. and French, N. (2015a). Prevalence of endemic enteropathogens of calves in New Zealand dairy farms. New Zealand Veterinary Journal 63(3): 147-152.

- Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J. and French, N. (2015b). Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Veterinary Journal 203(2): 155-160.
- Browne, A.S., Midwinter, A.C., Withers, H., Cookson, A.L., Biggs, P.J., Marshall, J.C., Benschop, J., Hathaway, S., Haack, N.A., Akhter, R.N. and French, N.P. (2018). Molecular Epidemiology of Shiga Toxin-Producing *Escherichia coli* (STEC) on New Zealand Dairy Farms: Application of a Culture-Independent Assay and Whole-Genome Sequencing. Applied and Environmental Microbiology 84(14): e00481-18.
- Castro-Hermida, J.A., Almeida, A., Gonzalez-Warleta, M., Da Costa, J.M.C., Rumbo-Lorenzo, C. and Mezo, M. (2007). Occurrence of *Cryptosporidium parvum* and *Giardia duodenalis* in healthy adult domestic ruminants. Parasitology Research 101(5): 1443-1448.
- Cookson, A.L., Taylor, S.C., Bennett, J., Thomson-Carter, F. and Attwood, G.T. (2006). Serotypes and analysis of distribution of Shiga toxin producing *Escherichia coli* from cattle and sheep in the lower North Island, New Zealand. N Z Vet J 54: 78-84.
- Donnison, A., Ross, C. and Clark, D. (2008). *Escherichia coli* shedding by dairy cows. New Zealand Journal of Agricultural Research 51(3): 273-278.
- Fukushima, H. and Seki, R. (2004). High Numbers of Shiga Toxin-Producing *Escherichia Coli* found in bovine faeces collected at slaughter in Japan. FEMS Microbiology Letters 238(1): 189-197.
- Grinberg, A., Pomroy, W.E., Weston, J.F., Ayanegui-Alcerreca, A. and Knight, D. (2005). The occurrence of *Cryptosporidium parvum*, *Campylobacter* and *Salmonella* in newborn dairy calves in the Manawatu region of New Zealand. New Zealand Veterinary Journal 53(5): 315-320.
- Hunt, C.L., Ionas, G. and Brown, T.J. (2000). Prevalence and strain differentiation of *Giardia intestinalis* in calves in the Manawatu and Waikato regions of North Island, New Zealand. Veterinary Parasitology 91(1-2): 7-13.
- Irshad, H., Cookson, A.L., Hotter, G., Besser, T.E., On, S.L.W. and French, N.P. (2012). Epidemiology of Shiga toxin-producing *Escherichia coli* O157 in very young calves in the North Island of New Zealand. New Zealand Veterinary Journal 60(1): 21-26.
- Krueger, N.A., Anderson, R.C., Krueger, W.K., Horne, W.J., Wesley, I.V., Callaway, T.R., Edrington, T.S., Carstens, G.E., Harvey, R.B. and Nisbet, D.J. (2008). Prevalence and concentration of *Campylobacter* in rumen contents and feces in pasture and feedlot-fed cattle. Foodborne Pathogens and Disease 5(5): 571-577.
- Learmonth, J.J., Ionas, G., Pita, A.B. and Cowie, R.S. (2003). Identification and genetic characterisation of *Giardia* and *Cryptosporidium* strains in humans and dairy cattle in the Waikato Region of New Zealand. Water Science and Technology 47(3): 21-26.
- Moriarty, E.M., Sinton, L.W., MacKenzie, M.L., Karki, N. and Wood, D.R. (2008). A survey of enteric bacteria and protozoans in fresh bovine faeces on New Zealand dairy farms. Journal of Applied Microbiology 105(6): 2015-2025.
- Neilsen, EM. (2002). Occurrence and strain diversity of thermophilic campylobacters in cattle of different age groups in dairy herds. Letters in Applied Microbiology 35: 85–89.

- Nydam, D.V., Wade, S.E., Schaaf, S.L. and Mohammed, H.O. (2001). Number of *Cryptosporidium parvum* oocysts or *Giardia* spp cysts shed by dairy calves after natural infection. American Journal of Veterinary Research 62(10): 1612-1615.
- O'Handley, R.M., Cockwill, C., McAllister, T.A., Jelinski, M., Morck, D.W. and Olson, M.E. (1999). Duration of naturally acquired giardiosis and cryptosporidiosis in dairy calves and their association with diarrhea. Journal of the American Veterinary Medical Association 214(3): 391-396.
- O'Handley, R.M., Olson, M.E., Fraser, D., Adams, P. and Thompson, R.C.A. (2000). Prevalence and genotypic characterisation of *Giardia* in dairy calves from Western Australia and Western Canada. Veterinary Parasitology 90(3): 193-200.
- Rapp, D., Ross, C.M., Cave, V. and Muirhead, R.W. (2014). Prevalence, concentration and genotypes of *Campylobacter jejuni* in faeces from dairy herds managed in farm systems with or without housing. J Appl Microbiol 116(4): 1035-1043.
- Uga, S., Matsuo, J., Kono, E., Kimura, K., Inoue, M., Rai, S.K. and Ono, K. (2000). Prevalence of *Cryptosporidium parvum* infection and pattern of oocyst shedding in calves in Japan. Veterinary Parasitology 94(1-2): 27-32.
- Vanderholm DH (1984) Properties of agricultural wastes. In: Vanderholm DH ed. Agricultural waste manual. NZAEI Project Report No. 32. Lincoln University
- Winkworth, C.L., Matthaei, C.D. and Townsend, C.R. (2008). Prevalence of *Giardia* and *Cryptosporidium* spp in calves from a region in New Zealand experiencing intensification of dairying. N Z Vet J 56(1): 15-20.
- Zhao, T., Doyle, M.P., Shere, J. and Garber, L. (1995). Prevalence of enterohemorrhagic *Escherichia-coli* O157-H7 in a survey of dairy herds. Applied and Environmental Microbiology 61(4): 1290-1293.

Sheep farming

- Anderson SA, Turner SJ, Lewis GD. (1997). Enterococci in the New Zealand environment: Implications for water quality monitoring. Water Science and Technology 35: 325-331.
- Castro-Hermida JA, Almeida A, González-Warleta M, Correia da Costa JM, Rumbo-Lorenzo C, Mezo M. (2007). Occurrence of *Cryptosporidium parvum* and *Giardia duodenalis* in healthy adult domestic ruminants. Parasitology research 101: 1443-1448.
- Cookson, A.L., Taylor, S.C., Bennett, J., Thomson-Carter, F. and Attwood, G.T. (2006). Serotypes and analysis of distribution of Shiga toxin producing *Escherichia coli* from cattle and sheep in the lower North Island, New Zealand. NZ Vet J 54(2): 78-84.
- Geurden T, Thomas P, Casaert S, Vercruysse J, Claerebout E. (2008). Prevalence and molecular characterisation of *Cryptosporidium* and *Giardia* in lambs and goat kids in Belgium. Veterinary parasitology 155: 142.

- Moriarty, E.M., McEwan, N., Mackenzie, M., Karki, N., Wood, D.R. and Sinton, L.W. (2011). Incidence and prevalence of microbial indicators and pathogens in ovine faeces in New Zealand. New Zealand Journal of Agricultural Research 54(2): 71-81.
- Ogden, I.D., Macrae, M. and Strachan, N.J.C. (2005). Concentration and prevalence of *Escherichia Coli* O157 in sheep faeces at pasture in Scotland. Journal of Applied Microbiology 98(3): 646-651.
- Ogden, I.D., Dallas, J.F., Macrae, M., Rotariu, O., Reay, K.W., Leitch, M., Thomson, A.P., Sheppard, S.K., Maiden, M., Forbes, K.J. and Strachan, N.J.C. (2009). *Campylobacter* excreted into the environment by animal sources: prevalence, concentration shed, and host association. Foodborne Pathogens and Disease 6(10): 1161-1170.
- Yang, R.C., Jacobson, C., Gardner, G., Carmichael, I., Campbell, A.J.D. and Ryan, U. (2014). Development of a Quantitative PCR (QPCR) for *Giardia* and analysis of the prevalence, cyst shedding and genotypes of *Giardia* present in sheep across four states in Australia. Experimental Parasitology 137: 46-52.
- Yang, R., Abraham, S., Gardner, G.E., Ryan, U. and Jacobson, C. (2017). Prevalence and pathogen load of *Campylobacter* Spp., *Salmonella Enterica* and *Escherichia coli* 0157/0145 Serogroup in sheep faeces collected at sale yards and in abattoir effluent in Western Australia. Australian Veterinary Journal 95(5): 143-148.

Beef farming

- Atwill, E.R., Hoar, B., Pereira, M.D.G.C., Tate, K.W., Rulofson, F. and Nader, G. (2003). Improved Quantitative Estimates of Low Environmental Loading and Sporadic Periparturient Shedding of *Cryptosporidium Parvum* in Adult Beef Cattle. Applied and Environmental Microbiology 69(8): 4604-4610.
- Cookson, A.L., Taylor, S.C., Bennett, J., Thomson-Carter, F. and Attwood, G.T. (2006). Serotypes and analysis of distribution of Shiga toxin producing *Escherichia coli* from cattle and sheep in the lower North Island, New Zealand. NZ Vet J 54(2): 78-84.
- Fukushima, H. and Seki, R. (2004). High Numbers of Shiga Toxin-Producing *Escherichia Coli* Found in Bovine Faeces Collected at Slaughter in Japan. FEMS Microbiology Letters 238(1): 189-197.
- Hoar, B.R., Paul, R.R., Siembieda, J., Pereira, M.D.C. and Atwill, E.R. (2009). *Giardia Duodenalis* in Feedlot Cattle from the Central and Western United States. BMC Veterinary Research 5.
- Irshad, H., Cookson, A.L., Prattley, D.J., Dufour, M. and French, N.P. (2014). Distribution of Escherichia coli strains harbouring Shiga toxin-producing E. coli (STEC)-associated virulence factors (stx1, stx2, eae, ehxA) from very young calves in the North Island of New Zealand. Epidemiol Infect 142(12): 2548-2558.
- Krueger, N.A., Anderson, R.C., Krueger, W.K., Horne, W.J., Wesley, I.V., Callaway, T.R., Edrington, T.S., Carstens, G.E., Harvey, R.B. and Nisbet, D.J. (2008). Prevalence and Concentration of *Campylobacter* in Rumen Contents and Feces in Pasture and Feedlot-Fed Cattle. Foodborne Pathogens and Disease 5(5): 571-577.

- Oates, S.C., Miller, M.A., Hardin, D., Conrad, P.A., Melli, A., Jessup, D.A., Dominik, C., Roug, A., Tinker, M.T. and Miller, W.A. (2012). Prevalence, Environmental Loading, and Molecular Characterization of *Cryptosporidium* and *Giardia* Isolates from Domestic and Wild Animals Along the Central California Coast. Applied and Environmental Microbiology 78(24): 8762-8772.
- Ogden, I.D., Dallas, J.F., Macrae, M., Rotariu, O., Reay, K.W., Leitch, M., Thomson, A.P., Sheppard, S.K., Maiden, M., Forbes, K.J. and Strachan, N.J.C. (2009). *Campylobacter* Excreted into the Environment by Animal Sources: Prevalence, Concentration Shed, and Host Association. Foodborne Pathogens and Disease 6(10): 1161-1170.
- Stanley, K.N., Wallace, J.S., Currie, J.E., Diggle, P.J. and Jones, K. (1998). The Seasonal Variation of Thermophilic Campylobacters in Beef Cattle, Dairy Cattle and Calves. Journal of Applied Microbiology 85(3): 472-480.

Wildfowl

- Anderson, S.A., Turner, S.J. and Lewis, G.D. (1997). Enterococci in the New Zealand environment: Implications for water quality monitoring. Water Science and Technology 35(11-12): 325-331.
- Gould, D.J. and Fletcher, M.R. (1978). Gull droppings and their effects on water quality. Water Research 12(9): 665-672.
- Haack, S.K., Fogarty, L.R. and Wright, C. (2003). *Escherichia coli* and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: Sources, characteristics, and environmental pathways. Environmental Science & Technology 37(15): 3275-3282.
- Moriarty, E.M., Karki, N., Mackenzie, M., Sinton, L.W., Wood, D.R. and Gilpin, B.J. (2011). Faecal indicators and pathogens in selected New Zealand waterfowl. New Zealand Journal of Marine and Freshwater Research 45(4): 679-688.
- Oates, S.C., Miller, M.A., Hardin, D., Conrad, P.A., Melli, A., Jessup, D.A., Dominik, C., Roug, A., Tinker, M.T. and Miller, W.A. (2012). Prevalence, environmental loading, and molecular characterization of *Cryptosporidium* and *Giardia* Isolates from domestic and wild animals along the Central California Coast. Applied and Environmental Microbiology 78(24): 8762-8772.
- Ogden, I.D., Dallas, J.F., Macrae, M., Rotariu, O., Reay, K.W., Leitch, M., Thomson, A.P., Sheppard, S.K., Maiden, M., Forbes, K.J. and Strachan, N.J.C. (2009). *Campylobacter* Excreted into the Environment by Animal Sources: Prevalence, Concentration Shed, and Host Association. Foodborne Pathogens and Disease 6(10): 1161-1170.

Stormwater systems

Ahmed W, Hamilton K, Toze S, Cook S, Page, D. (2019). A review on microbial contaminants in stormwater runoff and outfalls: potential health risks and mitigation strategies. *Science of the Total Environment* 692: 1304-1321.

- AWQC. 2008. *Pathogens in Stormwater.* Australian Water Quality Centre report prepared by P Monis for the NSW Department of Environment and Climate Change and the Sydney Metropolitan Catchment Management Authority.
- Bambic DG, Hildare-Hann BJ, Rajal VB, Sturm BSM, Minton CB, Schriewer A, Wuertz S. 2015. Spatial and hydrologic variation of Bacteroidales, adenovirus and enterovirus in a semi-arid wastewater effluent-impacted watershed. *Water Research* 75: 85-94.
- Brownwell MJ, Harwood VJ, Kurz RC, McQuaig SM, Lukasik J, Scott TM. 2007. Confirmation of a putative impact on stormwater quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations. *Water Research* 41: 3747-3757.
- Chandrasena GI, Deletic A, McCarthy DT. 2016. Biofiltration for stormwater harvesting: comparison of Campylobacter spp. and Escherichia coli removal under normal and challenging operational conditions. *Journal of Hydrology* 537: 248-259.
- Cizek AR, Characklis GW, Krometis LA, Hayes JA, Simmons OD, Di Lonardo S, Alderisio KS, Sobsey MD. 2008. Comparing the partitioning behaviour of Giardia and Cryptosporidium with that of other indicator organisms in stormwater runoff. *Water Research* 42 (17): 4421-4438.
- Gibson C, Stadterman K, States S, Sykora J. 1998. Combined sewer overflows: a source of *Cryptosporidium and Giardia? Water Science and Technology* 38 (12): 67-72.
- Hathaway JM, Hunt WF, Jadlocki S. 2009. Indicator bacteria removal in storm-water Best Management Practices in Charlotte, North Carolina. *Journal of Environmental Engineering* 135 (12): 1275-1285.
- Huang X, Rippy MA, Mehring AS, Winfrey BK, Jiang SC, Grant SB. 2018. Shift in dissolved organic matter and microbial community composition are associated with enhanced removal of fecal pollutants in urban stormwater wetlands. *Water Research* 137: 310-323.
- Humphrey C, Chaplinski N, O'Driscoll M, Kelley T, Richards S. 2014. Nutrient and *E. coli* attenuation in a constructed stormwater wetland in the North Carolina coastal plain. *Environment and Natural Resources Research* 4: 12-22.
- Jiang SC, LIM KY, Huang X, McCarthy D, Hamilton AJ. 2015. Human and environmental health risks and benefits associated with the use of urban stormwater. *WIREs Water* 2 (6): 683-699.
- Kleinheinz GT, McDermott CM, Hughes S, Brown A. 2009. Effects of rainfall on *E. coli* concentrations at Door County, Wisconsin Beaches. *International Journal of Microbiology* 2009: 876050, 9p.
- Noble RT, Griffith JF, Blackwood DA, Furham Gregory JB, Hernandez X, Liang X, Bera Angie A, Schiff K. 2006. Multitiered approach using quantitative PCR to track sources of faecal pollution affecting Santa Monica Bay, California. *Applied and Environmental Microbiology* 72 (2): 1604-1612.
- Paule-Mercado, M.A., Ventura, J.S., Memon, S.A., Jahng, D., Kang, J.H., Lee, C.H., 2016. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff. *Science of the Total Environment* 550: 1171–1181.

- Rajal VB, McSwain BS, Thompson DE, Leutenegger CM, Wuertz S. 2007. Molecular quantitative analysis of human viruses in California stormwater. *Water Research* 41 (19): 4287-4298.
- Rowny JG, Stewart JR. 2012. Characterisation of nonpoint source microbial contamination in an urbanising watershed serving as a municipal water supply. *Water Research* 46: 6143-6153.
- Shen P, McCarthy DT, Chandrasena GI, Li Y, Deletic A. 2019. Validation and uncertainty analysis of a stormwater biofilter treatment model for faecal microorganisms. *Science of the Total Environment* <u>https://doi.org/10.1016/j.scitotenv.2019.136157</u></u>
- Sidhu JPS, Hodgers L, Ahmed W, Chong MN, Toze S. 2012. Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. *Water Research* 46 (20): 6652–6660.
- States S, Stadterman S, Ammon L, Vogel P, Baldizar J, Wright D, Conley L, Sykora J. 1997. Protozoa in river water: sources, occurrence and treatment. *Journal of the American Water Works Association* 89 (9): 74-82.
- Steele, JA, Blackwood D, Griffith JF, Noble RT, Schiff KC. 2018. Quantification of pathogens and markers of faecal contamination during storm events along popular surfing beaches in San Diego, California. *Water Research* 136: 137-149
- Surbeck CQ, Jiang SC, Ahn JH, Grant SB. 2006. Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed. *Environmental Science and Technology* 40 (14): 4435-4441.

Stockyards

- Department of Water. 2015. Water Quality Protection Note 80: Stockyards. Department of Water, Government of Western Australia: Perth.
- Fotheringham VJC. 1995. Disinfection of stockyards. *Reviews in Science and Technology* 14(2): 293-307.
- Galuszka J. 2019. Owners of Fielding Sale Yards fined more than \$100,000 for letting effluent run into waterways. <u>https://www.stuff.co.nz/business/farming/agribusiness/112035520/owners-of-feilding-sale-yards-fined-more-than-100000-for-letting-effluent-run-into-waterways.</u>
- Jain P, Cunningham D, Chesson J, Fabiansson S. 2003. A *Quantitative Risk Assessment of Microbial Emissions from Abattoirs.* Report PRMS.036. Prepared for Meat and Livestock Australia Limited. Bureau of Rural Sciences, Commonwealth of Australia, Canberra.
- Kiermeier A, Bobbitt J, Vanderline P. Higgs G, Pointon A, Sumner J. 2006. Use of routine beef carcase *Escherichia coli* monitoring data to investigate the relationship between hygiene status of incoming stock and processing efficacy. *International Journal of Food Microbiology* 111: 263-269.
- Ruane EM, Murphy PNC, Healy MG, French P, Rodgers M. 2011. On-farm treatment of dairy soiled water using aerobic woodchip filters. *Water Research* 45(20): 6668-6676.

Animal effluent/manure application to land

- Bolan NS, Laurenson S, Lowe H, Luo J, Hill PH, Sukias J. 2009a. Treatment of farm effluents in New Zealand's dairy operations. *New Zealand Land Treatment Collective: Proceedings for the 2009 Annual Conference 120-*
- Bolan NS, Laurenson S, Luo J, Sukias J. 2009b. Integrated treatment of farm effluents in New Zealand's dairy operations. Bioresource Technology 100: 5490-5497.
- Brewer AJ, Cumby TR, Dimmock SJ. 1999. Dirty water from dairy farms: treatment and disposal options. *Biosource Technology* 67: 161-169.
- Cameron KC, Di, HJ. 2019. A new method to treat farm dairy effluent to produce clarified water for recycling and to reduce environmental risks from the land application of effluent. *Journal of Soils and Sediments* 19: 2290-2302.
- Cameron M, Trenouth C. 1999. *Resource Management Act Practice and Performance. A case study of farm dairy effluent management*. Wellington, Ministry for the Environment.
- Collins R, McLeod M, Hedley M, Donnison A, Close M, Hanly J, Horne D, Ross C, Davies-Colley R, Bagshaw C, Matthews L. 2007. Best management practices to mitigate faecal contamination by livestock in New Zealand waters. *New Zealand Journal of Agricultural Research* 50: 267-278.
- Craggs RJ, Tanner CC, Sukias JPS, Davies-Colley RJ. 2003. Dairy farm wastewater treatment by an advanced pond system. *Water, Science and Technology* 48: 291-297.
- Culley JLB, Phillips PA. 1982. Bacteriological quality of surface and subsurface runoff from manured sandy clay loam soil. *Journal of Environmental Quality* 11: 155-158.
- Donnison A, Ross C, McGowan A. 2011. *Escherichia coli* and *Campylobacter* in two conventional Waikato dairy farm effluent ponds. *New Zealand Journal of Agricultural Research* 54, 97-104.
- Dungan RS, Klein M, Leytem AB. 2012. Quantification of bacterial indicators and zoonotic pathogens in dairy wastewater ponds. *Applied and Environmental Microbiology* 78: 8089-8095.
- Hawke RM and Summers SA. 2006. Effects of land application of farm dairy effluent on soil properties: a literature review. *New Zealand Journal of Agricultural Research* 49: 307-320.
- Heatly P. 2001.Dairying and the environment: managing farm dairy effluent. New Zealand Dairy Research Institute, Palmerston North.
- Hickey CW, Quinn JM, Davies-Colley RJ. 1989. Effluent characteristics of dairy shed oxidation ponds and their potential impacts on rivers. *New Zealand Journal of Marine and Freshwater Research* 23: 569-584.
- Houlbrooke DJ. 2008. Best practice management of farm dairy effluent in the Manawatu-Wanganui region. Prepared for Horizons Regional Council. AgResearch, Hamilton. 44p.

- Houlbrooke DJ, Horne DJ, Hedley MJ, Hanly JA, Snow VO. 2004. A review of literature on the land treatment of farm-dairy effluent in New Zealand and its impact on water quality. *New Zealand Journal of Agricultural Research* 47: 499-511.
- Houlbrooke D, Laurenson S, Carrick S. 2011a. Categorising the environmental risk from land application of liquid wastes based on soil properties. Prepared for the Marlborough District Council. Joint publication of AgResearch and Landcare Research. Hamilton, New Zealand. 49p.
- Houlbrooke D, Longhurst R, Orchiston T, Muirhead R. 2011b. *Characterising Dairy Manures and Slurries*. Envirolink tools report AGRX0901. Prepared for Surface Water Integrated Management (SWIM). AgResearch. 119p.
- Longhurst RD, Robers AHC, O'Connor MB. 2000. Farm dairy effluent, a review of published data on the chemical and physical characteristics in New Zealand. *New Zealand Journal of Agricultural Research* 43: 7-143
- Longhurst R, Houlbrooke D, Laurenson S. 2013. On-farm farm dairy effluent risk assessment. Report prepared for DairyNZ. RE500/2013/040. AgResearch.
- McLeod M, Aislabie J, Ryburn J, McGill A. 2004. Microbial and chemical tracer movement through Granular, Ultic and Recent Soils. *New Zealand Journal of Agricultural Research* 47: 557-563.
- Monaghan RM, Smith LC. 2004. Minimising surface water pollution resulting from farm-dairy effluent application to mole-pipe drained soils. II. The contribution of preferential flow of effluent to whole-farm pollutant losses in subsurface drainage from a West Otago fairy farm. *New Zealand Journal of Agricultural Research* 47: 417-428.
- Monaghan RM, Hedley MJ, Di HJ, McDowell RW, Cameron KC, Ledgard SF. 2007. Nutrient management in New Zealand pastures – recent developments and future issues. *New Zealand Journal of Agricultural Research* 50: 181-201
- Monaghan RM, Houlbrooke DJ, Smith LC. 2010. The use of low-rate sprinkler application systems for applying farm dairy effluent to land to reduce contaminant transfers. *New Zealand Journal of Agricultural Research* 53: 389-402.
- Muirhead RW, Elliot AH, Monaghan RM. 2011. A model framework to assess the effect of dairy farms and wild fowl on microbial water quality during base flow conditions. *Water Research* 45: 2863-284.
- Roach CG, Longhurst RD, Ledgard SF. 2001. Land application of farm dairy effluent for sustainable dairy farming. *Proceedings of the New Zealand Grassland Association* 63: 53-57.
- Robb C, Barkle G. 2000. *New Zealand Guidelines for the Utilisation of Sewage Effluent on Land.* Whitehouse LJ, Wang H, Tomer M, eds. Joint publication of the New Zealand Land Treatment Collective and Forest Research. Rotorua, New Zealand.
- Rollo M, Ledgard S, Longhurst B. 2017. Final report: trends in dairy effluent management. Final report prepared for the Ministry of Primary Industries. RE450/2017/041. AgResearch.
- Ross C, Donnison A. 2003. *Campylobacter* and farm dairy effluent irrigation. *New Zealand Journal of Agricultural Research* 46: 255-262.

- Selvarajah, N. 1996: Dairy farm effluent treatment pond performance in the Waikato region: a preliminary review of the regional survey. In: Mason, I. G. ed. *Tertiary treatment options for dairy shed and piggery wastewaters*. Proceedings of a Seminar, Massey University, 28 June. pp. 18-25.
- Wang XM, Di HJ, Cameron KC, Li B. 2019. Effect of treated farm dairy effluent on E. coli, phosphorus, and nitrogen leaching and greenhouse gas emissions: a field lysimeter study. *Journal of Soils and Sediments* 19: 2303-2312.

horizons.govt.nz

24 hour freephone 0508 800 800 **fax** 06 952 2929 | **email** help@horizons.govt.nz Private Bag 11025, Manawatu Mail Centre, Palmerston North 4442