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Executive summary 
This document provides practical guidance for the analysis and reporting of temporal trends in 
environmental data. The emphasis is on freshwater physico-chemical and biological variables that 
are commonly and routinely measured in New Zealand’s rivers (collectively denoted, for simplicity, 
as “water quality variables”). However, the methods are applicable to other environmental variables 
and domains (e.g., lakes, groundwaters, estuaries and coastal waters) for which a suitable time-
series record exists. The guidance has been prepared for Horizons Regional Council on behalf of the 
regional sector, via an MBIE Envirolink advice grant. 

Trend assessments serve multiple purposes, including informing the public about changes in 
environmental state, assessing the effectiveness of management actions and policies, evaluating 
relationships between environmental conditions and the factors that influence them (i.e., driver or 
explanatory variables), and providing early warning of environmental problems. Trend assessments 
are used in New Zealand for regional and national environmental reporting, reflecting regional 
council responsibilities under Section 35 (2) of the Resource Management Act. Recently, the 
requirement for trend analysis has been made explicit in the National Policy Statement for 
Freshwater Management. Therefore, the primary purpose of this guidance is to facilitate more 
consistent and transparent assessment and reporting of trends in freshwater and other 
environmental data. 

Trend assessment is a process of building a statistical model of the behaviour of a variable at a site 
over a time period of interest based on a series of observations. These guidelines describe methods 
for detecting and quantifying the two most fundamental aspects of the relationship between the 
variable and time: the direction (i.e., increasing or decreasing) and the rate of change (e.g., change in 
concentration per year). In addition, because the observations are subject to random fluctuations 
and only comprise a sample of the variable’s behaviour over the time period, the guidelines also 
describe methods for quantifying the uncertainties associated with the assessment of trend 
direction and rate. 

Obtaining reliable results from a trend analysis and reporting these results appropriately depends on 
choices that are associated with the analysis objectives. These guidelines start by describing three 
types of application of trend analysis: “local”, “regional” and “national”. Local applications are 
concerned with maximising information about trends at a single site whereas regional and national 
applications are concerned about obtaining consistent assessments over many sites. The details of 
trend analysis and reporting process vary to some extent depending on the type of application. 

The guidance describes trend analysis in four main steps: 

1. acquiring and compiling data, 

2. accounting for confounding factors, 

3. assessing trend direction, rate, and confidence in these determinations, and 

4. reporting the results.  

Each of these steps is addressed in a separate section and each section has three subsections that 
describe the purpose of the step, the methods, and a commentary. As for all data analysis, there are 
complications and subjective decisions at every step and there is no single ‘right’ way to carry out a 
trend assessment. This means that it is not possible or appropriate to rigidly dictate how each step is 
to be carried out. Users of these guidelines are therefore encouraged to read them in their entirety 
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and to fully understand the purpose of each step. The methods subsections then provide 
recommended approaches in considerable detail. In the commentary subsections, we provide 
background to the methods, and discuss subjective decisions associated with each step and the 
implications of those decisions. 

The fundamental unit of analysis in trend assessments is a specific water quality (or other) variable 
at a single site, which we refer to as the site/variable combination. The data acquisition and 
compilation methods are intended to ensure that the data for each site/variable combination are as 
complete and correct as possible, organised so that they are easily uploaded to statistical modelling 
software, and associated with information to assist in reporting (e.g., geographic coordinates so that 
maps can be produced). Aspects of data acquisition and compilation that are particularly important 
to the statistical modelling of trends are (1) the correct identification of censored values 
(observations where the true values were too low or too high to be measured with precision), (2) the 
definition of seasons and the analysis time period and (3) ensuring adequately distributed data 
(based on filtering rules). Items 2 and 3 are associated with subjective decisions that need to 
consider the objectives of the application and the constraints associated with the available data. 

Some of the variation in a water quality variable of interest may be associated with factors that 
confound its relationship with time (i.e., the trend). Increased variation associated with confounding 
factors reduces the detectability of trends. These guidelines explain how the analysis process deals 
with two types of confounding factors: covariates and seasonality. A covariate is a variable, other 
than time, that is related to the observations and whose influence obscures the variable – time 
relationship of primary interest. Examples of covariates for water quality variables are flows in rivers 
and tidal fluctuation in estuaries. The guidelines describe how to build a statistical model of the 
relationship between the covariate and the observations to remove the covariate’s influence prior to 
carrying out the trend analysis. 

For many site/variable combinations, season is also a confounding factor and seasonality explains a 
considerable amount of variation in the observations. In these cases, accounting for systematic 
seasonal variation increases the statistical power of the trend assessment (i.e., increase the 
confidence in the estimate of direction and rate of the trend). The guidelines describe how to assess 
seasonal variation and how to deal with seasonality in trend analyses. 

The guidance recommends the use of two non-parametric statistical models for assessing trend 
direction, rate, and confidence in these determinations: the Mann Kendall correlation assessment 
and Sen slope regression and their seasonal counterparts. These models have been the basis for 
trend analyses of freshwater water quality variables and other types of environmental variables in 
New Zealand and worldwide for approximately 30 years. The guidance explains the methods for 
using these models and provides a commentary on quantifying confidence and dealing with serial 
correlation and multiple censoring levels. There are strong practical reasons for using non-
parametric models for many applications of trend analysis rather than parametric alternatives; the 
reasons are explained in the guidelines. In some situations, alternative models are more appropriate; 
the guidelines do not cover alternative models in detail but provide references to other sources of 
guidance. 

In the past few years multiple changes have been recommended  for using the non-parametric 
statistical models recommended here, and for interpreting outputs from those models. The most 
important  recommendation is that null hypothesis significance testing (NHST) be replaced by a 
continuous measure of confidence in trend direction. This change is beneficial as it reduces the 
chance of misinterpreting the results of trend analyses and provides information that is more helpful 
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for  management. The guidelines provide an up-to-date description of recent changes and why they 
are recommended. We note that the recommended discontinuation of NHST concerns only the 
interpretation of model outputs (the p-value returned by the Mann Kendall correlation assessment) 
and therefore any trend assessment performed using the recommended method can still be 
interpreted using the significance testing approach. 

The key metrics for reporting the results of trend assessments are: trend direction (positive or 
negative), confidence about the trend direction (a probability that the evaluated direction is 
correct),  trend rate (the rate of change of the environmental variable per year) and confidence 
about the trend rate. It is generally necessary to report these metrics for multiple site/variable 
combinations, and this is always the case for regional and national applications. These guidelines 
provide methods for effectively reporting the four metrics using tabular, graphical or map format. In 
addition, graphical methods are suggested for communicating aggregated trend direction and 
confidence information. Aggregated summaries across sites (e.g., proportion of sites with increasing 
and decreasing trends, by variable) provide informative overviews of water quality changes across a 
domain of interest (e.g., region, environmental class, the entire country). The guidance also notes 
the importance of considering current state alongside trend assessment results. 

The trend analysis methods set out in the guidance are used to determine whether an 
environmental variable of interest has changed over time. These analyses provide no information 
about the causes of temporal trends. Attribution of trends to causes is not covered by these 
guidelines. However, trend detection may often trigger the need for management action and this 
will require investigation of possible causes. Robust attribution of water quality trends to causes is 
complicated and challenging. One of the complications is the influence of natural climate variation. 
Appendix D summarises a recent study that quantified the influence of the El Niño Southern 
Oscillation climate processes (ENSO) on river water quality trends in New Zealand. Results of the 
study indicated that the ENSO climate signal translates into a predictable effect on water quality 
trends. This means that climate variation may amplify or counteract the effects of other drivers of 
water quality trends, such as land use and land management. 

In the future, alternatives to the trend assessment methods recommended here will be trialled in 
New Zealand. The alternative methods are likely to have advantages and disadvantages that need to 
be evaluated. However, in our view there are several issues of greater immediate importance to 
improving trend assessment and reporting in New Zealand. First, further consideration should be 
given to understanding trend rates that are of environmental and management importance to 
provide context for reporting and for prioritising management actions. Establishing important trend 
rates would also help with the issues surrounding statistical inference (e.g., this would enable the 
use of equivalence tests, which pose more realistic hypotheses). Second, more work is required to 
develop methods for assessing the causes of trends (i.e., attribution). A robust understanding of the 
causes of water quality trends, both degrading and improving, will enable effective management 
actions to be prescribed to arrest and reverse degradation and drive recovery. 
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1 Introduction 
Detecting temporal trends in a core set of environmental variables (or ‘indicators’) is one of the 
primary aims of many environmental monitoring programmes, particularly long-term state of the 
environment (SOE) monitoring programmes. In New Zealand – and worldwide – environmental 
trend analyses are carried out by different agencies (e.g., councils, central government, industries, 
research agencies) at different spatial (e.g., local, regional, national) and temporal (e.g., annual, 
decadal) scales. These analyses serve multiple purposes, including informing the public about 
changes in environmental state, assessing the effectiveness of management actions and policies, 
evaluating relationships between environmental conditions and the factors that influence them (i.e., 
driver or explanatory variables), and providing early warning of impending environmental problems 
(McMellor and Underwood 2014; MFE & StatsNZ 2020; Murphy 2020; Tomperi et al. 2016). 

A key use of trend assessment in New Zealand is in regional and national environmental reporting, 
reflecting regional council responsibilities under Section 35 (2) of the Resource Management Act 
(RMA), to monitor the state of the environment of their region, and the efficiency and effectiveness 
of policies and methods in regional policy statements and plans. More recently, the need for trend 
analyses has been made explicit in national legislation, with Section 3.19 of the National Policy 
Statement for Freshwater Management (NPS-FM 2020; NZ Government 2020) directing regional 
councils to assess trends in freshwater attribute states (where attributes comprise the freshwater 
indicators listed in Appendix 2 of the NPS-FM). Section 3.19 of the NPS-FM requires regional councils 
to determine appropriate trend periods and sampling frequencies, and to specify the likelihood (i.e., 
the level of confidence about trend direction) of trends. Section 3.20 of the NPS-FM directs councils 
to “take action to halt or reverse degradation” and requires the action to be “proportionate to the 
likelihood and magnitude of the trend, the risk of adverse effects on the environment, and the risk of 
not achieving target attribute states”. 

In a general sense, carrying out a trend assessment means building a statistical model of the changes 
in an environmental indicator over time. For the last three decades, two types of statistical models1 
have been widely used in trend analyses of freshwater water quality variables and other types of 
environmental variables, both in New Zealand and worldwide (e.g., Ali et al. 2019; Larned et al. 
2016; Sa’adi et al. 2019). However, in the past few years there have been changes to some of the 
details concerning how these models are implemented and interpreted2, in New Zealand (McBride, 
2019) and elsewhere (e.g., Choquette et al. 2019; Helsel et al. 2020). These changes are generally 
beneficial as they improve the rigour and scope of trend analyses, but they can also create problems 
for comparing the results of successive analyses if environmental changes are confounded by 
methodological changes. In addition, there are numerous steps in the model building process such 
as data preparation, deciding on temporal resolution (e.g., months, seasons or years within multi-
year trend periods), removing or including the influence of covariates, and deciding whether to 
account for regular seasonal fluctuations (Helsel et al. 2020). These steps in the model building 
process require the analyst to make decisions. Different decisions between analyses can lead to 
differences in reported trends, even when these are derived from identical datasets (e.g., Oelsner et 
al. 2017; Rangeti et al. 2015). The subsequent differences in trend results, and the variation in 
methods that produce them, can be a source of confusion about and mistrust of environmental 
reports. 

 
1 These models are based on the Mann-Kendall test of correlation and Sen slope regression and are discussed in detail in Section 6. 
2 Briefly, these changes involve improvements in the way censored values are handled and the rejection of the use of null hypothesis 
significance testing in favour of assessing confidence in trend direction. These changes are discussed in detail in Section 5. 
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In light of the growing requirements and evolving use and application of trend assessment, a 
selection of the regional sector’s Surface Water Integrated Management (SWIM) Special Interest 
Group supported the preparation of a guidance document to set out the key steps and decisions 
involved in the trend analysis and reporting. The Horizons Regional Council obtained an MBIE 
Envirolink large advice grant (HZLC154) for NIWA and LWP to prepare the guidance. 

1.1 Scope 
This guidance document focuses on temporal trend assessment and reporting methods appropriate 
for freshwater physico-chemical and biological variables that are commonly and routinely measured 
in New Zealand’s rivers (e.g., visual clarity, dissolved inorganic nitrogen and the Macroinvertebrate 
Community Index (MCI)). However, the methods are applicable to other environmental variables 
(e.g., chlorophyll a, Secchi depth) and domains (e.g., lakes, groundwaters, estuaries and coastal 
waters) for which a suitable time-series record exists. For simplicity, we refer to all variables that are 
routinely measured in freshwater monitoring programmes as “water quality variables”. The methods 
discussed in this guidance are appropriate for the analysis of variables that are collected in SOE 
monitoring programmes used for assessing and reporting environmental state and trends. These 
programmes are characterised by routine but infrequent observation of variables (e.g., monthly, 
quarterly, or annually). Low frequency observations mean that the statistical assumption of 
independence of observations is generally not violated. It has become common in recent years for 
regional councils to undertake near-continuous sampling of some water quality variables (e.g., 
dissolved oxygen, turbidity). These data exhibit temporal autocorrelation and their analysis must be 
undertaken using methods that are not covered in this document. An additional characteristic of SOE 
monitoring programmes is that observations generally occur on a specified date irrespective of the 
conditions prevailing at the time of measurement. This means that the sample data (i.e., the 
observations) are representative of the population (i.e., the water quality over the entire monitoring 
period). Representative samples are a general requirement for estimating statistics that characterise 
populations, such as mean or median values, or in the case of trend assessment, directions and rates 
change in a variable through time. 

The statistical methods discussed in this document address two primary questions: 

1. What was the direction of change in a water quality variable over a time period (i.e., 
was water quality degrading or improving)? 

2. What was the rate of the change over that time period? 

In addition, the statistical methods provide an estimate of confidence associated with the answer to 
each of these two questions. The directions and rates of trends and the confidence in these 
assessments have been fundamental components of SOE reporting in New Zealand for the past two 
decades and are now requirements of the NPS-FM 2020. Analyses of water quality time series can 
also answer more complicated questions such as whether the data exhibit cyclic variation and 
whether the changes through time are non-linear or stepped. Methods used to detect more 
complicated types of trends are out of scope for this guidance. However, we provide some 
discussion of these other methods in the commentary sections of this document, and direct readers 
to publications with further guidance (e.g., Helsel et al. 2020). 

The statistical methods discussed in this document are used to detect and quantify trends but 
provide no information about their causes. Water quality trends are often attributed to causes in an 
informal, speculative way (Ryberg et al. 2018). This practice should be avoided, and rigorous, 
quantitative methods used. However, rigorous trend attribution is a complex topic and advice on 
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attribution methods is beyond the scope of this guidance. One of the complexities is that trends are 
invariably influenced by multiple drivers, both natural and anthropogenic. One of the natural drivers 
of water quality trends that has had limited study in New Zealand is climate variability (Scarsbrook et 
al. 2003). More recent work indicates that climate variation has considerable influence on the 
strength and direction of trends in multiple river water quality variables (Snelder et al. submitted). A 
summary of this study is provided in Appendix D. A pertinent conclusion from the study is that 
climate variation may amplify or counteract the effects of other drivers of water quality trends, even 
when those trends are assessed over time windows that are longer than a decade. 

The methods in this report have been documented in earlier reports and journal articles (e.g., Gadd 
et al. 2020; Larned et al. 2016, 2004; McBride 2019; MFE & StatsNZ 2017, 2019). These and other 
articles and reports represent the ongoing development of trend assessment methods. Although this 
report sets out the current approaches for analysing and reporting water quality trends, we stress 
that methods will continue to evolve and there is no single ‘right’ way to carry out trend assessment. 
Whatever the approach taken, documenting the steps and any assumptions made is important. 

1.2 Report outline 
This report is structured to reflect the sequential analysis steps undertaken as part of a water quality 
trend analysis in New Zealand (Figure 1-1). In Section 2, we discuss some fundamental concepts. This 
section explains that trend assessment is a field of statistical modelling and that the choice of 
modelling method, and choices made in the data preparation process, should be made based on the 
objectives of the analysis. This section also recommends a default method for trend assessment, 
which is referred to as the “traditional non-parametric method”. 

In Sections 3-7, we outline the steps in the trend assessment process from obtaining the data to 
reporting the results. These sections define the purpose of each analysis step, define recommended 
methods, and provide commentary about the recommendations. Sections 3 to 5 concern aspects of 
data preparation that are specific to the non-parametric trend assessment method. Section 6 
describes the statistical models that are the basis of the traditional non-parametric method. Section 
7 describes methods for reporting the results of trend analyses. 

In Section 7, worked examples are used to demonstrate trend assessment in several common 
situations (e.g., missing data, high proportions of censored data). These examples follow the steps 
shown in Figure 1-1. Supplementary data files are available from the LWP website so that readers 
can implement the examples in Section 7 using one or both of two free computer programmes for 
conducting trend assessments, LWPTrends3 and TimeTrends4. The worked examples can be used to 
explore the consequences of some of the choices that can be made at the various stages of trend 
assessment. 

 
3 Available at http://landwaterpeople.co.nz/wp-content/uploads/2018/07/LWPTrends_TrendsDec19.zip  
4 Available at https://www.jowettconsulting.co.nz/home/time-1  
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Figure 1-1: High level flow chart showing the main steps in the trend assessment procedure.   The 
guideline section corresponding to each step is indicated. Red stars indicate steps that are relevant to regional 
and national applications (see Section 2.2). Green stars indicate steps that involve different choices for local 
applications compared to regional and national applications. 
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2 Fundamental considerations 

2.1 What is trend assessment? 
Trend assessment is a process of building a statistical model of the behaviour of some variable over 
time from a series of observations (Helsel et al. 2020). These guidelines describe methods for 
detecting and quantifying two aspects of that behaviour, the direction and rate of change of the 
variable over the time period of interest. The fundamental unit of analysis in trend assessments is a 
specific water quality variable at a single site, which we refer to as the site/variable combination. 
The observations pertaining to a site/variable combination comprise a time-series that is a statistical 
sample of the population (i.e., a sample of the actual conditions over the entire period of interest). 
Because a sample is only a representation of the population, we can only model the behaviour of the 
variable over time. Like all statistical models, a trend assessment is a simplification of reality that 
aims to expose the most important features of the relationship or pattern of interest. The simplest 
and most salient features of the relationship between a variable and time in trend assessment are 
the direction of change and the rate of change in the variable. 

Statistical models representing the direction and rate of change of a variable generally consist of one 
or more of the following: (1) components related to regular cycles such as seasonal or tidal variation; 
(2) components driven by some exogenous variable (for example, flow as a driver of a contaminant 
concentration in a river); (3) a long-term trend in the central tendency of the variable; and (4) 
random variability that is composed of natural variability, measurement error, and possibly serial 
dependence. The trend (i.e., the pattern of interest) is represented by the long-term trend 
component of the model (i.e., the direction and rate of change in the central tendency over some 
multi-year period of interest). If we could measure the variable of interest at a very high sampling 
rate and with perfect accuracy it is virtually certain that we would conclude that there is a trend 
(McBride 2019). In reality, monitoring programmes do not have very high sampling rates or perfect 
measurements, thus statistical models are needed to estimate the direction and rate of change, and 
to estimate confidence in these estimates. 

2.2 Trend applications and their objectives 
Trend analyses are undertaken for a variety of purposes and the details of the methods should vary 
with the objectives. In this document, we compare choices that an analyst would logically make for 
three types of application trend assessment: a “local application”, a “regional application” and a 
“national application”. These three applications are not intended to cover all possible objectives of 
trend assessments, rather they are used to illustrate how the application’s objectives influence 
choices that are made in some of the analytical steps. 

The objective of a local application is to extract as much information as possible about the trend 
direction and rate of change from the available data for individual site/variable combinations. An 
example of a local application is associated with implementing the Section 3.19 and Section 3.20 
requirements of the NPS-FM in a given catchment where there are highly significant environmental 
and resource use values at stake. In local applications, choices at various steps in the assessment 
process are concerned with establishing the trend with minimum uncertainty. We note that a local 
application might involve assessment of many site/variable combinations. The important point 
however is that the objective would be to maximise information for each site and variable. The local 
application may therefore have inconsistencies across different site/variable combinations because 
maximising the information for each assessment is prioritised over ensuring robust comparisons can 
be made between sites.  
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Regional applications, as illustrated in this guidance, entail assessing and reporting trends across 
many sites and variables in the context of regional SOE monitoring programmes. The objective of a 
regional application is to allow robust comparison of trends between sites and to provide a synoptic 
assessment of trends across a region. The objective may also include comparing between sites that 
are grouped by environmental classes or locations within the region. Therefore, in regional 
applications, choices at various steps in the assessment process are concerned with ensuring 
consistency in the individual trend assessments applied to all site/variable combinations, which then 
enables robust comparisons to be made across all sites. 

National applications entail assessing and reporting trends across many sites and variables where 
the data are derived from multiple regional SOE (or similar) programmes. The objectives of a 
national application are similar to a regional application and therefore, choices at various steps in 
the assessment process are concerned with ensuring consistent methods are applied to all 
site/variable combinations. However, differences between regional SOE monitoring programmes 
(e.g., differences in sampling frequency, differences in analytical methods) mean that additional 
steps in the analytical process are required to achieve consistency in the use of data between 
regions. For example, if there are differences in sampling intervals between regions, achieving 
consistency may involve removing or coarsening data for some regions. 

Differences in the objectives of trend applications lead to differences in all aspects of all analysis 
steps and therefore the results. This is one reason that, for example, trend assessments for 
individual sites in local or regional applications may differ from those in a national application. 

2.3 Trend assessment methods and model selection 
In general, the type of statistical model that is appropriate for assessing trends in water quality 
variables is a regression model of the water quality observations versus time. There are many types 
of regression models that can be used to assess different types of trends including sudden, gradual 
and non-monotonic trends. A classification of these regression models and their strengths and 
weaknesses is provided by Helsel et al. (2020). An important distinction between statistical models 
used for trend assessment is whether they are parametric or non-parametric. Parametric models 
assume that the data conform to specific distributions (e.g., that the data are normally distributed). 
This means that several conditions of validity must be met for the result of an analysis, particularly 
the assessment of confidence, to be reliable. Non-parametric models do not rely on distributional 
assumptions and therefore have fewer conditions of validity. 

This guidance provides detailed advice on the use of only one statistical modelling approach for 
trend assessment, which is referred to hereafter as the “traditional non-parametric method”. This 
method is the recommended default because: 

1. it provides reliable estimates of trend direction and rate over a wide range of data 
characteristics,  

2. it does not require a high level of statistical knowledge to use with confidence, and  

3. it will produce assessments that are consistent and comparable for different 
site/variable combinations. 

There are times when alternatives to the traditional non-parametric method may be appropriate, 
depending on the objective of the trend assessment and the characteristics of the data being 
analysed. The most familiar alternatives are parametric models. Parametric and non-parametric 
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models have multiple differences (e.g., data requirements, statistical assumptions); these 
differences may be strengths or weaknesses depending on the application. Therefore, analysts 
should be aware of the differences between parametric and non-parametric models so that 
alternatives to the recommended traditional non-parametric method can be considered should the 
circumstances suggest this. 

To understand the advantages and disadvantages of non-parametric and parametric types of 
regression that can be used for trend assessment, we first consider some common characteristics of 
water quality time-series data. These are: 

1. non-normal distributions, often with a finite lower bound;  

2. presence of outliers;  

3. natural cycles such as diurnal, seasonal or tidal;  

4. missing values or irregularly spaced observations;  

5. the presence of values below analytical detection limits or above reporting limits (i.e., 
censored values); and  

6. associations between the observations and covariates such as river flow. 

The most significant feature of non-parametric models is that they are more robust than their 
parametric equivalents. This means they produce reliable results when data are non-normal, finite 
lower bounded, and where there are outliers. In contrast, parametric models require a great degree 
of care to ensure that the model is correctly specified. Parametric models will generally require 
higher levels of statistical skill by the analyst than the non-parametric default (e.g., correctly 
transforming the data, dealing with outliers, and applying the correct distribution in the context of a 
generalised linear model). Although care is still required, the risk of incorrect specification of non-
parametric models is lower than for parametric models. This is especially important in regional and 
national applications where trend analyses are carried out for many site/variable combinations. In 
these types of applications, non-parametric models can be applied consistently to all site/variable 
combinations with greater confidence that they will not violate statistical assumptions than 
parametric alternatives. Another important consideration for regional and national applications is 
that enough information needs to be provided in reporting the results for the audience to be able to 
verify that the assumptions were not violated. For parametric models this represents a significant 
burden because reporting regional and national applications often involves hundreds to thousands 
of individual models pertaining to site/variable combinations. 

One advantage of parametric models over their non-parametric equivalent is that they have greater 
statistical power. This means the confidence in the results of a trend assessment (direction and rate) 
will be higher for a parametric regression than the non-parametric equivalent. Helsel et al. (2020) 
indicate that this advantage is “slight” and depends on the correct specification of the parametric 
model. They also note that when there is modest departures from normality of the residuals of a 
parametric model, non-parametric models can be more powerful than parametric regression. When 
there are many analyses that must be performed (i.e., when the application objective is a regional 
and national trend assessment), the benefit of increased statistical power that is associated with 
parametric models is likely to be outweighed by the analytical effort required to undertake detailed 
case-by-case checking of assumptions. 
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An important characteristic of the traditional non-parametric method is that it only detects and 
characterises the monotonic trend through the time period of interest. This means that the model of 
the behaviour of the water quality variable through the time period is constrained to be either 
constantly increasing or decreasing. Examples of monotonic and non-monotonic trends are shown in 
Figure 2-1. In contrast, parametric models can include more flexible representations of the 
behaviour of a variable through a time period, including non-linear changes and cyclic components. 
Note that the simplest form of parametric model, an ordinary linear regression, also represents the 
behaviour of the variable as a monotonic trend. The monotonic feature of the traditional non-
parametric method is not a disadvantage in terms of responding to the two questions that are most 
commonly addressed in trend analyses (i.e., what were the trend direction and rate). However, 
when the underlying model of the trend is constrained to be monotonic, information about the 
underlying dynamics may be hidden. A relevant example of the dynamic behaviour of water quality 
variables that is hidden by monotonic trend assessment is discussed in Appendix D of this guideline. 
In this case, dynamic behaviour that is linked to climate variation was hidden by individual 
assessments carried out using the traditional non-parametric method. When these assessments 
were repeated through time, oscillations in the trend strength and direction were evident. 

 

Figure 2-1: Example of monotonic and non-monotonic trends in nitrate-nitrate nitrogen (NNN) 
concentrations (observations) in the Taieri River at the National Water Quality Monitoring Network site at 
Outram between 1998 and 2017.   The red line represents a model fitted to the observations that is 
constrained to be a monotonic (increasing) trend. The blue line represents a more flexible model that indicates 
that the behaviour was not monotonic within the period and suggest NNN concentrations initially increased, 
then decreased between 1996 and 2005 and increased again after 2005. 

Because consistency of trend assessment methods is not an objective of a local application, the use 
of parametric models to undertake trend assessment is most relevant to this type of application. 
Local applications involving significant environmental values and resources may drive the need for 
maximum insight into the form of the water quality change and for maximum confidence in the 
assessment. The greater statistical power afforded by parametric models may be advantageous even 
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though ensuring that the model assumptions have not been violated is more onerous than for a non-
parametric model. However, there remains a final consideration for the use of parametric models 
regarding the correct handling of censored values. Censored values are handled robustly by the 
recommended traditional non-parametric method (see Section 3.2), but censored values complicate 
the use of parametric models in trend assessments. One option that is often used, but which is 
inappropriate, is to replace the censored value with some arbitrary value such as zero, the reporting 
limit, or half the reporting limit. These approaches will give inaccurate assessments (Helsel 2005, 
2012). The appropriate parametric approach to modelling trends when there are censored values is 
the use of a Tobit (or censored regression) model (Cohen 1976; Hald 1949). 

The recommended traditional non-parametric method comprises two non-parametric models. The 
first model is used to assess trend direction based on a non-parametric correlation procedure 
originally developed by Mann (1945) and further developed by Hirsch et al. (1982). The second 
model is used to assess trend rate5 based on a non-parametric regression procedure originally 
developed by Sen (1968) (the Sen slope6) and further developed by Hirsch et al. (1982). These two 
models have been the basis for numerous trend assessments of water quality monitoring data (i.e., 
monthly, quarterly, or annual observations) carried out by agencies in New Zealand and 
internationally. However, there have been recent advances in the interpretation of the outputs from 
both models (McBride 2019). These advances reflect the need for risk-based decision making in 
environmental management and are described in detail later in these guidelines. 

For readers interested in alternatives to the traditional non-parametric method in this report, we 
recommend Helsel et al. (2020). We note that for river water quality trend assessment there is 
increasing use of a model called Weighted Regressions on Time, Discharge, and Season (WRTDS; 
Choquette et al., 2019; Hirsch et al., 2010, 2015; Woodward and Stenger, 2020). WRTDS is designed 
to allow for flexibility in representation of the long-term trend, seasonal components, and discharge-
related components of the behaviour of the water-quality variables. WRTDS also characterises water 
quality trend directions and rates with uncertainty estimates. However, WRTDS is data intensive (it 
requires a minimum of 120 monthly samples and a mean daily flow record; Hirsch et al. 2015). 

Practitioners may seek a formulaic approach that specifies a single correct way to undertake a trend 
assessment in each application and given a specific type of dataset. We do not believe this is 
possible. Because there is a range of statistical models that can be used to represent the behaviour 
of a variable over time, and because there are subjective elements in the model building process, 
there are likely to be several good approaches for a given application. 

As a closing note to this section, we recognise that the field of statistical modelling, including trend 
assessment, is evolving. It’s evolution is characterised by the development and provision of 
alternative methods (e.g., Hirsch et al. 2015) and debates about the advantages and validity of those 
methods. Common topics of debate include Bayesian versus frequentist methods (Bayarri and 
Berger 2004; Makowski et al., 2019) and significance tests (Bayarri and Berger 2004; Steidl 2006; 
Stephens et al. 2007). These debates and the different perspectives held by practitioners means that 
the methods we recommend in this guidance will not be unanimously accepted. Furthermore, the 
methods we recommend are not immutable; they will be modified over time and will eventually be 
obsolete, due to changes in environmental monitoring systems and progress in statistical science. 

 
5 Trend rates often referred to as magnitudes. We use trend rate because the Sen slope indicates direction and magnitude and its units 
indicate change per unit time (i.e., a rate). 
6 Note this is also referred to as the Theil–Sen estimator, the Kendall S robust line-fit method and the Kendall–Theil robust line. 
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3 Acquiring and compiling data 
Most raw water quality data in New Zealand are held by individual regional and unitary councils and 
NIWA (via the National River Water Quality Network, NRWQN). When compiling datasets for 
national or regional applications, where possible, we recommend that data be accessed directly 
from online data servers (e.g., Hilltop and KiWIS servers) or council websites  as the consistency of 
server formatting can ease the data compilation process. Alternatively, data may be compiled from 
spreadsheets provided by the monitoring agency. A compiled national water quality dataset is also 
available from Land Air Water Aotearoa (LAWA), collated from regional council and NIWA data. This 
dataset has been through a data grooming procedure (e.g., decisions on site inclusion and which 
water quality variables to include and combine) and is restricted to the previous ten-year period 
(updated annually). Therefore, the LAWA dataset represents a readily available subset of national 
water quality data, but may not be suitable for all purposes. 

3.1 General data preparation 

3.1.1 Purpose 
Aggregating data and metadata from multiple sources inevitably results in inconsistencies in data 
structure, including dissimilar data matrices (i.e., arrangements of data in rows and columns) and 
multiple forms of variable names, geographic coordinates, date and time formats, units of 
measurement, and other metadata elements. Consistency in data structure is needed for sorting, 
searching, manipulating and displaying data, updating and exporting datasets, and carrying out 
statistical analyses. General principles for data organisation and recommendations for consistent 
metadata elements have been set out in several recent publications (e.g., Hart et al. 2016; Sprague 
et al. 2017; Wickham 2014). 

Data errors are common in water quality and ecology datasets and can originate at many steps in 
the sampling, measuring and recording process. Among the most common causes of data errors are 
faulty or poorly calibrated field and laboratory sensors, sample contamination, calculation errors, 
taxonomic identification errors and data-entry errors (Davies-Colley et al. 2012, 2019; Rangeti et al. 
2015; Rode and Suhr 2007). The resulting data errors include extreme values (for a given variable), 
negative values, zeros, non-numeric or alpha-numeric entries, and strings of repeated values. Good 
quality datasets with minimum errors are required to achieve robust trend assessments. 

3.1.2 Methods 
We provide recommendations for general good practice for preparing water quality time-series data 
in Appendix A. These recommendations are relevant not only for trend assessments, but other 
analyses and reporting based on water quality datasets. In particular, we recommend that data 
should be prepared with: 

 consistent data structure; 

 corrections to data errors; and 

 correct location information, and variable names and units (and any other appropriate 
metadata). 

Analysts should also be cognisant of any changes in sample collection and laboratory procedures, as 
trend assessments based on time-series with changes between incomparable methods are likely to 
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be unreliable (for further commentary, see the National Environmental Monitoring Standards 
(NEMS) for Water Quality)7. 

3.2 Formatting censored values 

3.2.1 Purpose 
For several water quality variables, true values are occasionally too low or too high to be measured 
with precision. The “detection limit” is the lowest value that can be reliably measured by an analysis 
and the “reporting limit” is the greatest value of a variable that can be reliably measured. Water 
quality datasets from New Zealand rivers and lakes often include phosphorus and ammoniacal 
nitrogen concentration measurements that are below detection limits (referred to as left-censored), 
and visual water clarity measurements that are above reporting limits (referred to as right-
censored). 

Censored values are managed in a special way by the traditional non-parametric trend assessment 
method (described in Section 5). It is therefore important that censored values are correctly 
identified in the data. Detection limits or reporting limits that have changed through the trend time 
period (often due to analytical changes) can induce trends that are associated with the 
measurement methods rather than actual changes in the variable. Methods are available to account 
for changes in censoring levels (see worked example in Section 7.4). This is another reason why it is 
important that censored values are correctly identified within datasets.  

3.2.2 Method 
Cases where variable values are below a detection limit or above a reporting limit are often 
indicated by data entries such as “<detection limit”, “<DL” and “<0.01”, all of which refer to values 
below laboratory detection limits. Data entries such as “> RL” and “>1500” refer to values above 
laboratory reporting limits. 

Censored values should not be omitted prior to trend assessment, as this results in biased trend 
estimates. Similarly, censored values should not be replaced with fabricated values (e.g., 
0.5×detection limit, 1.1×reporting limit) without retaining the information that the data were 
censored and the actual detection and reporting limits. 

When using trend assessment packages, care needs to be taken to format censored values as 
required by those packages. For example, the LWP-Trends library and TimeTrends packages 
recognise censored values when they are formatted as positive numeric values preceded with an 
inequality symbol (e.g., “<0.025”, “>1500”). Neither of these software packages recognise non-
numeric entries such as “<DL”, “>RL” or “BDL”. 

3.2.3 Commentary 
Values in water quality datasets can be classified as censored when they are not and not classified as 
censored when they are (actually censored). These misclassification errors can lead to inaccurate 
trend assessments. In particular, assignment of values as censored when they are not has the 
potential to cause large inaccuracies. This is because one option in analysis of data with multiple 
detection limits (i.e., right-censored) is to set all observations whose values are below the highest 
detection limit to that value (i.e., the highest detection limit; see Section 5.3.3 for details). If a high 
value in the dataset is misclassified as censored, much of the information about changes in water 
quality over the time period will be lost when lower values are set to the ‘highest’ detection level. 

 
7 http://www.nems.org.nz/documents/  
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3.3 Defining seasons and time periods and ensuring adequately distributed 
data 

3.3.1 Purpose 
The trend assessment methods recommended in this guidance are robust to missing data, irregular 
sampling intervals and small datasets (see Section 5). However, there are several reasons why it is 
generally important to define seasons and time periods and to assess whether the observations are 
adequately distributed over time. First, because variation in many water quality variables is 
associated with the time of the year or “season”, the robustness of trend assessment is likely to be 
diminished if the observations are biased to certain times of the year. Second, a trend assessment 
represents a time period; essentially a window of time that has a set starting date and duration. An 
assessment of the behaviour of a variable over the time period will be hindered if the observations 
are not reasonably evenly distributed across the time period. For these reasons, important steps in 
the data compilation process include specifying the seasons, the time period, and ensuring 
adequately distributed data. 

3.3.2 Method 
In most regional SOE monitoring programmes, sampling occurs at a set frequency, (e.g., monthly, 
quarterly). Trend assessment ‘seasons’ are generally specified to match these sampling frequencies 
because this maximises the temporal resolution of the available observations. Therefore, in the 
context of trend assessment, seasons are defined by months or quarters and there is generally one 
observation for each sample interval (i.e., each season within each year). Sampling frequency for 
some variables is annual (e.g., freshwater macroinvertebrates). In this case the ‘season’ is specified 
by the year. 

In practice there are often deviations from the prescribed sampling routine that produce gaps in the 
record (i.e., missing observations for particular sample intervals). The traditional non-parametric 
method is statistically robust to such gaps. In addition, assessments can be performed robustly with 
as few as eight observations (see Section 5.2.1). Trend assessments can therefore be carried out 
using datasets with high proportions of gaps and small numbers of observations. The quantitative 
consequence of increasing gaps and reducing observations is to reduce statistical power. Another 
consequence of increasing the proportion of gaps is a reduction in the representativeness of the 
observations across the time period. To achieve both adequate statistical power and 
representativeness, it is desirable that sample size is as large as possible, gaps are limited, and the 
observations are adequately distributed over the sample intervals within the time period. It is 
therefore necessary to define the analysis time period so that the adequacy of the data can be 
evaluated. The time period is defined by nominating the start date and the duration. To avoid bias 
towards any particular season, we recommend that the time period is specified in complete years 
and the start date is therefore the beginning of the first year. Note that a “year” can be defined such 
that it commences in any month (i.e., not just a calendar year). The specification of years starting in 
months other than January is common in hydrological analyses (and in the annual water quality 
reports prepared by many councils); these non-calendar years are termed “water years”.  

There is no specific limitation on the proportion of gaps or requirements for the distribution of 
observations over the sample intervals. Whether the proportion of gaps is acceptable is a subjective 
decision that needs to be made by considering the objectives of each trend analysis. The decision is 
further complicated by the option of coarsening the sample intervals when there are many gaps. 
Coarsening the seasons (e.g., from months to quarters) can reduce the proportion of sample 
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intervals that are gaps in the trend assessment period, thereby increasing the representativeness of 
the observations. Coarsening is usually achieved by taking the median of the original observations 
within each of the coarsened seasons (e.g., the median of each monthly observation where these 
exist, within each quarter). The trade-off associated with coarsening the seasons is a reduction in the 
statistical power (i.e., confidence) and precision of a trend analysis. 

The definition of non-calendar (“water”) years has at least three benefits. First it can enable an 
analysis to be more up to date by allowing the time period to end at any date (e.g., the date of the 
last observation) rather than the end of the last complete calendar year in the record. Second, it can 
allow more appropriate beginning and ending of sampling intervals. For example, macroinvertebrate 
monitoring might be carried once every summer, and sampling dates may range from December to 
February; using a calendar year could inadvertently pool two samples into a single year, leaving no 
samples in the next year. In this case, a “water-year” would better reflect the intended annual 
sampling. Third, it can allow seasons (if these are defined by coarsening the sampling interval) to be 
aligned with the expected seasonal response of the observations. 

One deviation from the prescribed sampling routine is the collection of more than one observation 
in a single sample interval (e.g., two observations within a month). In this situation, taking the 
median within each sample interval is generally the default approach. As with coarsening the sample 
interval, the effect of this is a reduction in statistical power and precision. There is an alternative 
approach that utilises all the observations (and therefore maximises power and precision). The 
alternative approach assumes that the observations within a sample interval are independent but 
treats these as occurring at the same time (referred to as ties in time). If the samples are not 
independent, the median of the observations should be used. The worked example in Section 7.3 
demonstrates the implementation of some of these subjective decisions around season definition 
for a site with an irregular monitoring history. 

Another common deviation from the prescribed sampling routine occurs when there is a change in 
sampling interval within the time series. In this situation, the coarser sampling interval should be 
used to define seasons. For the part of the record with a higher sampling frequency, the 
observations in each season should be defined by taking the observation closest to the midpoint of 
the coarser season. The reason for not using the median value in this case is that it will induce a 
trend in variance, which will invalidate the null distribution of the test statistic (Helsel et al. 2020). 

Choosing an appropriate trend assessment time period is dependent on the objective of the 
application. Time periods may be selected to coincide with planning cycles (e.g., to assess whether 
water quality changes between the time that a regional plan took effect, and the next plan change), 
to assess water quality changes between the commencement of management actions or land-use 
changes and the present day, or to determine whether water quality changes are correlated with 
temporal environmental fluctuations. In practice, the selection of an appropriate trend period length 
is a trade-off between several factors. Shorter periods are appropriate for assessing the impacts of 
recent changes in land and water management or in environmental conditions. However, for a given 
sampling frequency, statistical power decreases with reducing time period duration because there 
are fewer observations. We note also that shorter time periods are more likely to be influenced by 
climate variation, which can confound signals that may be of primary interest such as those 
associated with changes in resource use or management (see Appendix D). While the time period for 
local applications can be tailored to best answer the assessment objectives, (e.g., choosing a time 
period prior to and after the implementation of a specific management action), for regional and 
national trend assessments the same trend assessment period(s) should be applied across all site 
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variable combinations. Choosing an appropriate time period for regional and national applications 
involves further trade-offs, between maximising the trend period duration (to obtain trend 
assessments that are associated with larger sample sizes and therefore greater confidence) and 
maximising the number of sites (to improve spatial coverage and representation) that can be 
included in the assessment. In the most recent national trend assessments for rivers and lakes 
(Larned et al. 2018a, b), three time periods were used 10, 20 and 28 years; for each of nine water 
quality variables, the number of sites that could be included decreased as the time period 
lengthened. 

For a local application, decisions concerning the definition of seasons and tolerance of gaps should 
be based on maximising the information represented by the observations. However, in regional and 
national applications it is important that trends are commensurate in terms of their statistical power 
and representativeness of the time period. In these applications, the usual practice is to define 
consistent time periods so that all sites are subjected to the same conditions (i.e., equivalent 
environmental and management conditions). Regional and national applications also require 
analysts to define the acceptable proportion of gaps and how these are distributed across sample 
intervals so that the reported trends are assessed from comparable data. The acceptable proportion 
of gaps and representation of sample intervals by observations within the time period are commonly 
referred to as site inclusion or filtering rules,  or ‘completeness criteria’ (e.g., Larned et al. 2018a, b). 

There are no universally agreed data requirements or filtering rules for regional and national 
applications. The selection of these rules is complicated by a general trade-off: more restrictive rules 
increase the robustness of individual trend analyses but generally exclude a larger number of sites, 
thereby reducing spatial coverage. In most cases, this trade-off is also affected by the trend period. 
Progressive expansion of freshwater monitoring effort in New Zealand over the last two decades 
means that data are available for a larger number of sites over short and more recent time periods. 

The application of filtering rules for variables that are measured at quarterly intervals or less 
requires two steps. First, retain sites for which observations are available for at least X% of the years 
in the time period. Second, retain sites for which observations are available for at least Y% of the 
sample intervals. For variables that are measured or determined annually such as the 
Macroinvertebrate Community Index (MCI), the filtering rules are applied by retaining sites for which 
values are available for at least X% of the years in the trend period. In many recent national and 
regional trend analyses, where trend periods of 10 and 20 years have been reported the values for X 
and Y have been either 80% or 90% (e.g., Larned et al. 2018a, b). 

In the recent national analyses (Larned et al. 2018a, b), the definition of seasons was flexible in order 
to maximise the number of sites retained. If the distribution of observations for a given site did not 
meet a requirement for monthly sampling intervals, a coarsening of the data to quarterly seasons 
was applied and the distribution of observations was reassessed. It is noted that this decision implies 
a tolerance of variable levels of statistical power and representativeness across the sites that were 
represented in the analysis. It is also noted that when a variable is sampled annually, the only 
filtering rule concerns the distribution of observations across years. 

3.3.3 Commentary 
Ultimately choices concerning trend time periods and seasons need to consider the objectives of the 
trend assessment, the constraints associated with the available data and, for regional and national 
applications, the trade-offs between statistical power and site numbers. 
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Site inclusion rules used for trend assessments are subjective, and published reports of water quality 
and ecology trends across multiple sites have employed a wide range of rules (e.g., Mast 2013; 
Myers and Ludtke 2017; Oelsner et al. 2017; Sprague and Lorenz 2009). We know of no cases where 
the effects of different inclusion rules have been evaluated, including comparisons of stringent 
versus lenient rules. 

4 Accounting for confounding factors 
Some of the variation in a water quality variable of interest may be associated with factors that 
confound its relationship with time (i.e., the trend). Increased variation associated with confounding 
factors reduces the detectability of trends. The effect of two types of confounding factors on the 
variability of water quality observations can be accounted for prior to conducting the trend 
assessment: covariates and seasonality. In this section, we consider methods for pre-processing time 
series of water quality observations to ensure that covariates and seasonality are accounted for 
appropriately. 

4.1 Covariate adjustment 

4.1.1 Purpose 
Water quality trend assessments are used to characterise relationship between water quality 
variables and time. In this context, a range of different factors can be considered as “covariates”. A 
covariate is a variable that is quantitatively related to the observations, and this relationship 
confounds or obscures the water quality variable – time relationship that of primary interest. 
Statistical analysis can be used to remove the influence of the covariate on the observations. For 
river data, a common covariate is flow and this statistical analysis is called “flow adjustment”. The 
same principle is applied to other environments (e.g., lakes, estuaries and groundwater) and other 
covariates (e.g., wind, tide and barometric pressure), therefore the more general term is covariate 
adjustment. This section discusses flow adjustment in detail, but the principles are relevant to any 
other form of covariate adjustment. 

Where water quality observations are made in a river and are associated with solutes or particulate 
matter (e.g., concentrations, optical measures such as clarity and turbidity) some of the variation is 
usually associated with the river flow (i.e., discharge) at the time the observation was made. The 
observed values can vary systematically with flow rate due to flow-dependent physical and biological 
processes (e.g., dilution, microbial and plant metabolism, sediment and bacterial entrainment from 
channel deposits; Smith et al. 1996). Different processes may dominate at different sites so that the 
same water quality variable can exhibit positive or negative relationships with flow. Some water 
quality variables can be associated with a combination of dilution and wash off with increasing flow. 
For example, a portion of the E. coli load may come from point sources discharges such as sewage 
treatment plants (dilution effect), but another portion may be derived from surface wash-off. 
Increasing flow in this situation may result in an initial dilution at the low end of the discharge range, 
followed by an increase with discharge at higher values of discharge. 

Covariate adjustment has two purposes. First, it theoretically increases the statistical power of the 
trend assessment (i.e., increase the confidence in the estimate of direction and rate of the trend) by 
removing some of the variability that is associated with the covariate. Second, it removes any 
component of the trend that can be attributed to a trend in the covariate (e.g., a trend in the flow on 
sample occasions such as increasing or decreasing flow with time). Whether it is appropriate to 
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undertake covariate adjustment depends on the objectives the trend assessment; this is discussed in 
the commentary below. 

4.1.2 Method 
Covariate adjustment generally involves fitting a model that describes the relationship between the 
observations and the covariate, and then using the residuals of that model instead of the original 
observations in the subsequent trend assessment step. In the description of the covariate 
adjustment method below, we have focused on flow adjustment (i.e., removing the influence of flow 
at from water quality observations made in a river). However, the principles and the method are the 
same for any other type of covariate adjustment. 

To flow adjust water quality variables, it is necessary to have estimates of flow associated with each 
water quality observation. We note that in New Zealand, water quality monitoring is often carried 
out at locations that do not have flow recorders. Ideally, flow is directly measured at the water 
quality monitoring site, but flow estimates can also be derived from direct measurements made at 
nearby sites (appropriately calibrated to the observation site), or flow predictions from an accurate 
hydrological model. In New Zealand rivers, flow is often measured at 15-minute intervals and the 
time of water quality sample collection is often recorded. Therefore, it may be possible to describe 
the relationship between the water quality observations and flow using data derived from the high 
temporal resolution data, or it may be that better relationships can be derived from coarsening the 
temporal resolution of the flow data (e.g., from 15-minute to daily mean). Choice of temporal 
resolution is best decided by experimentation with the aim of determining the resolution that yields 
the best relationship. 

One or more regression models are fitted to describe the relationship between the water quality 
observations and flow. We recommend that censored water quality values are retained for this 
model fitting step. The approach to this taken by the LWPTrends and TimeTrends computer 
programmes is to use the raw values (i.e., the numeric component of the censored values) 
multiplied by a factor. The factor is generally 0.5 for detection limit censoring and 1.1 for reporting 
limit censoring. The reason for this approach is that the censored values represent the lower and 
upper range of the observations and therefore help to define the shape of the relationship being 
modelled. The removal of these values will often greatly diminish the definition of the relationship 
between the observations and flow. Since flow will only ever explain a proportion of the variation in 
the observations, inaccuracies associated with replacing censored values are likely to be of lesser 
importance than the loss of information about the shape of the relationship being modelled. 
Alternative regression models that are commonly applied in covariate adjustment are: linear 
regression, log-log regression, locally estimated scatterplot smoothing (LOESS) and generalised 
additive models (GAM). 

The next step is to select the best water quality-flow model from the alternatives. We strongly 
recommend that the model selection step is not automated and includes inspecting the data and the 
fitted models. This is because unsupervised fitting of regression models to relationships between 
water quality observations and flows can result in the selection of unrealistic and therefore 
inappropriate models (Figure 4-1 and examples in Section 7). We recommend that expert judgement 
is used to choose the most suitable model based at least three considerations: (1) homoscedasticity 
(constant variance) of the regression residuals, (2) model goodness of fit measures and (3) 
plausibility of the shape of the fitted model. We note that model goodness of fit measure alone 
should not be relied on because they can indicate good model performance but describe unrealistic 
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relationships. This is particularly likely when more flexible models are used such as LOESS and GAM 
models and therefore these models should be used with caution. 

When the relationship between flow and the water quality variable is poor, it is appropriate to 
conclude that that there is not a systematic relationship between the observations and flow. In this 
case, no model is selected, and no flow adjustment is performed. The trend assessment in this case 
should be performed on the raw data. Choosing not to flow adjust should take into consideration 
the balance between the potential to reduce variance in the observations, and the risk of selecting 
an implausible/inappropriate model of the relationship between the observations and flow. 

It should not be surprising to conclude that the relationship between flow and the water quality 
variable is poor for some site variable combinations. In a recent national trend assessment (Larned 
et al., 2018a), flow adjustment was performed using only log-log models for which the R2 value for 
the regression was greater than 20%. Where model R2 value was less than 20%, no flow adjustment 
was performed. This choice of model and R2 value was determined based on a “calibration” to 
expert judgement. It was concluded that log-log regression models produced realistic relationships 
for which water quality observations decreased or decreased monotonically with increasing flow. In 
contrast, the LOESS and GAM models tended to fit unrealistic relationships (Figure 4-1). For ten-year 
trends in the Larned et al. (2018a) study, only 14% of site/variable combinations with flow 
observations or estimates were flow adjusted. Some variables were more frequently judged to have 
relationships with flow including total nitrogen, nitrate-nitrogen and turbidity, while other variables 
were judged to rarely vary systematically with flow. We note that many of the sites in that study had 
flow estimates derived from a hydrological model. Uncertainties associated with the flow predictions 
may have reduced the frequency with which relationships between water quality observations and 
flow were identified. 

Figure 4-1 shows the relationship between water quality observations and flow for a site from the 
Larned et al. (2018a) study based on four different models. In this example, the log-log regression 
model has a lower R2 than the alternative GAM and LOESS models. However, it was concluded by 
Larned et al. (2018a) that the additional curvature in the alternatives to the log-log regression model 
could not be reasonably justified by the data and in some cases implied unrealistic relationships (see 
for example the Figure 4-1 LOESS0.5 model). 
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Figure 4-1: Example of the relationship between water quality observations and flow showing alternative 
fitted models.   The top plot shows data plotted on unscaled axes, and the bottom plot shows data plotted on 
log-transformed axes. The LOESS0.50 model is a LOESS model with a 50% span (more flexible), whereas the 
LOESS0.75 model is a LOESS model with a 75% span (relatively less flexible). 
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4.1.3 Commentary 
Covariate adjustment involves modelling the relationship between water quality observations and 
flow, precipitation or other potential confounding variables. This model is necessarily a simplification 
of reality and introduces subjective decisions about which (if any) model is the most appropriate. It 
is likely that different analysts will make different judgements concerning covariate adjustment and 
this will lead to variation in the results of their trend assessments. 

Whether covariate adjustment is appropriate depends on the aim of the trend assessment. If the 
aim is to understand whether a management action has affected water quality over time, then the 
contribution of a naturally varying covariate to the trend is a confounding factor and covariate 
adjustment will increase confidence in the trend assessment. In contrast, if the aim of the 
assessment is to quantify the water quality trend that actually occurred, then covariate adjustment 
may not be applicable. An example where quantification of the actual (unadjusted) trend might be 
required would be where a biological change has occurred in a stream and there is interest in 
whether this was associated with changes in water quality variables. In this case, relationship 
between the water quality trend and the biological response is of primary interest and it is not 
important that a component of the water quality trend was due to a covariate. 

For regional and national applications, trend assessments pertaining to multiple sites are often 
aggregated to describe broad-scale patterns in trends (see Section 2.2). When aggregating trends to 
describe broad-scale patterns, it is important to use consistent methods across sites. Since relatively 
few river water quality monitoring sites in New Zealand are also used for flow monitoring, requiring 
flow adjustment can significantly reduce site numbers and the representativeness of data with 
which to describe aggregate trends. Therefore, a subjective decision needs to be made concerning 
the trade-off between site numbers and the potential increase in confidence that might be achieved 
through flow adjustment. In our experience, conclusions drawn from aggregated trend analyses 
made using flow-adjusted and non-flow adjusted water quality data are similar (e.g., Fraser and 
Snelder 2018 and see Appendix B). 

The covariate adjustment method described above is applied when using the traditional non-
parametric method recommended in these guidelines (see Sections 2.3 and 4). Alternative trend 
assessment procedures can accommodate covariates in a single model. For example, parametric 
multiple linear regression can be used to fit a model to the relationship between the observed water 
quality data and time that includes non-periodic covariate values and a periodic representation of 
season. For further examples and a discussion of alternative trend assessment methodologies and 
their approaches to including covariates, see Helsel et al. (2020). 

4.2 Seasonality assessment 

4.2.1 Purpose 
For many site/variable combinations, season will explain a considerable amount of variation in the 
water quality observations. As described in Section 3.3, seasons are defined as any equal subdivision 
of a year into sample intervals; there can be between 2 and 12 seasons in a year. Note that for 
annually sampled data (e.g., MCI), the following discussion of seasonality does not apply. 

In cases where seasons are a significant source of variability, accounting for systematic seasonal 
variation should increase the statistical power of the trend assessment (i.e., increase confidence in 
the estimates of direction and rate of the trend). The purpose of a seasonality assessment is to 
identify whether seasons explain variation in the observations. If this is shown to be the case, then it 
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is appropriate to use the seasonal versions of the traditional non-parametric method recommended 
by these guidelines at the trend assessment step (Section 5). 

4.2.2 Method 
Because there are often regular seasonal fluctuations in river flow, we recommend that flow 
adjustment is performed first (as this may account for some or all of the water quality seasonal 
response), followed by a seasonality assessment. The seasonality of the water quality observations 
(either raw or flow adjusted) is then evaluated based on user defined seasons, as described in 
Section 3.3. The recommended method of seasonality assessment is the Kruskall-Wallis multi-sample 
test for identical populations. This is a non-parametric ANOVA that determines the extent to which 
season explains variation in the water quality observations. Following Hirsch et al. (1982), we 
recommend that site/variable combinations are evaluated in terms of seasonal fluctuations using 
the p-value from the Kruskall-Wallis test with α=0.05. For those sites/variable combinations that are 
determined to fluctuate seasonally, subsequent trend assessments should follow the “seasonal” 
variants described in Section 5.2. For regional and national applications, a fixed value of α should be 
applied across all site/variable combinations. For local applications, there is more flexibility in 
selecting an appropriate value of α for the specific site (see commentary below). 

Figure 4-2 and Figure 4-3 show distributions of water quality observations by season. The Kruskall-
Wallis tests performed on these data indicate that the site/variable combinations shown in shown in 
Figure 4-2 and Figure 4-3 are seasonal and non-seasonal, respectively. The plots provide a useful 
visual corroboration of the seasonality assessment. 

 
Figure 4-2: Plot showing the distributions of water quality observations within seasons.   For this example, 
the Kruskall-Wallis test was significant at α=0.05. 
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Figure 4-3: Plot showing the distributions of water quality observations within seasons.   For this example, 
the Kruskall-Wallis test was not significant at α=0.05. 

4.2.3 Commentary 
The choice of α in Kruskall-Wallis test, is subjective and a value of 0.05 is associated with a very high 
level of certainty the data exhibit a seasonal pattern. However, in our experience there are generally 
diminishing differences between the seasonal and non-seasonal trend assessments for p-values 
values larger than 0.05 (see Appendix C). 

Seasonality differs across sites and variables. In the most recent national trend assessment for rivers 
(Larned et al. 2018a), 64% of all site/variable/duration combinations (excluding MCI) were found to 
be seasonal (at α=0.05). The proportion of sites for which observations were determined to be 
seasonal varied between variables; the variables most frequently found to fluctuate seasonally were 
total nitrogen and nitrate-nitrogen (90% and 82% of sites, respectively), and ammoniacal nitrogen 
was the least frequently seasonal variable (38% of sites). 
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5 Trend assessment 

5.1 Purpose 
As already established, the primary purpose of trend assessment is to evaluate the direction (i.e., 
increasing or decreasing) and rate of the change in the central tendency of observed water quality 
values over a specified time period. Because the observations are subject to random fluctuations 
and are only a sample of the behaviour of the variable over the period of analysis, there is 
uncertainty about both the assessed direction and rate of the change. Therefore, as well as 
determining the trend direction and rate, trend assessments evaluate the uncertainty of these 
determinations. Trend direction and trend rate are both relevant and important. Focusing solely on 
trend direction may limit the value of a trend assessment because, while the direction provides 
information about the existence of a trend, it provides no information about the magnitude of the 
trend and therefore provides an insufficient basis to assess its importance or relevance. 

5.2 Recommended methods 

5.2.1 Trend direction assessment 
Trend direction and the confidence in trend direction are evaluated using either the Mann Kendall 
assessment or, where seasonality is identified in the observations (see Section 4.2), the Seasonal 
Kendall assessment. Although the non-parametric Sen slope regression also provides information 
about trend direction and its confidence, the Mann Kendall assessment is recommended because it 
handles censored values more robustly. However, Sen slope regression is the recommended method 
for assessing the trend rate (see Section 5.2.2). 

The Mann Kendall assessment requires no a priori assumptions about the distribution of the data 
but does require that the observations be randomly sampled and independent (no serial correlation) 
and that there is a sample size of ≥ 8. Both the Mann Kendall and Seasonal Kendall assessments are 
based on calculating the Kendall S statistic, which is explained diagrammatically in Figure 5-1. 

The Kendall S statistic is calculated by first evaluating the differences between all pairs of water 
quality observations (Figure 5-1, A and B). Positive differences are termed ‘concordant’ (i.e., the 
observations increase with increasing time) and negative differences are termed ‘discordant’ (i.e., 
the observations decrease with increasing time). The Kendall S statistic is the number of concordant 
pairs minus the number of discordant pairs (Figure 5-1, C1). The water quality trend direction is 
indicated by the sign of S with a positive or negative sign indicating an increasing or decreasing 
trend, respectively (Figure 5-1, C2). In the special case that Kendall’s S is equal to zero, the trend is 
pronounced “indeterminate” (i.e., the trend direction cannot be determined).  

The seasonal version of the Kendall S statistic S is calculated in two steps. First, for each season, the S 
statistic is calculated in the same manner as shown in Figure 5-1 but for data pertaining to 
observations in each individual season. Second, S is the sum of values over all seasons (𝑆 =  ∑ 𝑆


ଵ ), 

where Si is the number of concordant pairs minus the number of discordant pairs in the ith season 
and n is the number of seasons. The variance of S is calculated for each season and then summed 
over all seasons. 
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Figure 5-1: Pictogram of the steps taken in the trend direction assessment to calculate the Kendall S 
statistic and its p-value which is used to characterise confidence in trend direction. Notes: [a] the calculation 
of the variance in S has some adjustments to account for ties (numerically equal values) and censored values. 
Details of these adjustments can be found in (Helsel 2005, 2012). [b] There is a third alternative, where S=0. In 
this case the p-value is 1 and C is 0.5, and the trend direction is classified as “indeterminate”. Values of S equal 
to -1 or 1 will also result in a Z value of 0, a p-value of 1 and a C value of 0.5 and the trend direction is similarly 
classified as “indeterminate”. 

The sign (i.e., + or -) of the S statistic calculated from the sample represents the best estimate of the 
population trend direction but is uncertain (i.e., the direction of the population trend cannot be 
known with certainty). Confidence in the calculated S statistic in Mann's (1945) original trend test 
and subsequent extensions by Hirsch et al. (1982) is based on null hypothesis significance testing 
(NHST). The null hypothesis is that there is no trend (or the trend is zero). Mann (1945) showed that 
the S statistic was normally distributed, and S could be converted to Z-scores based on the formula 
shown in Panel C3 of Figure 5-1. This model describes the expected range of values of S if they were 
repeatedly calculated from many random samples, each with the same number of observations as 
the actual water quality data and drawn from a population with no trend (i.e., the null hypothesis 
was true). The derived distribution allows the evaluation of the probability of observing a value of S 
that is as least as extreme as the observed value, if the null hypothesis was true. That probability is 
the p-value and is shown by the areas of the distribution that are cut off at the calculated value of S. 
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Note that for a two-tailed test, the p-value includes the area defined by both tails because the test is 
concerned with the extremity of the value and does not consider if S is positive or negative. 

NHST is based on rejection of the null hypothesis when the p-value is smaller than an arbitrary value 
known as the significance level or alpha value (α). Confidence is indicated by two categories, 
significant and non-significant, which correspond to two tailed p-values ≤ α/2 or p-values > α/2, 
respectively. The p-value represents the probability of observing a value of S that is at least as 
extreme as that calculated from the sample if the null hypothesis were true. Recently McBride 
(2019) highlighted several criticisms of the use of NHST in water quality trend analysis that are 
discussed briefly below and in more detail in Section 5.3.1. Two of these criticisms are the rationale 
for our recommendation to use an alternative, continuous measure of confidence, which we call 
confidence in the trend direction (𝐶). Confidence in the trend direction is calculated as: 

𝐶 = 1 −
𝑝

2ൗ  

where p is the p-value calculated for either Kendall S or its seasonal variant (Mann 1945; Hirsch et al. 
1982). 

The value 𝐶 can be interpreted as the probability that the sign of the calculated value of S indicates 
the direction of the population trend (i.e., that the calculated trend direction is correct). The value 𝐶 
ranges between 0.5, indicating the sign of S is equally likely to be in the opposite direction to that 
indicated by the true trend, to 1, indicating complete confidence that the sign of S is the same as the 
true trend. Further discussion of the derivation of C, the benefits of C over traditional NHST 
significance testing, as well as the equivalence of C with a Bayesian measure of confidence, is 
presented in Section 5.3.1.1. 

The difference between the recommended confidence in the trend direction compared to NHST is 
demonstrated in the following example. Consider two trend assessments A and B with positive S 
values and p-values of 0.04 for A and 0.14 for B. Under a classic null-hypothesis test with α = 0.05, 
we would say that for A the null-hypothesis was rejected at the 95% confidence level and for B the 
null-hypothesis was not rejected at the 95% confidence level. Following the method that we 
recommend, the conclusion for assessment A is a positive trend with 98% confidence in the 
direction, and for assessment B, a positive trend with 93% confidence in the direction. 

As the size of the sample (i.e., the number of observations) increases, confidence in the trend 
direction increases. When the sample size is very large, C can be high, even if the trend rate is very 
low. It is important therefore that C is interpreted correctly as the confidence in direction and not as 
the importance of the trend. As stated at the beginning of this section; both trend direction and the 
trend rate are relevant and important aspects of a trend assessment. 

5.2.2 Assessment of trend rate 
Trend rate and the confidence in trend rate are evaluated using non-parametric Sen slope 
regressions of water quality observations against time. The Sen slope estimator (SSE; Hirsch et al. 
1982) is the slope parameter of a non-parametric regression. The SSE is calculated as the median of 
all possible inter-observation slopes (i.e., the difference in the measured observations divided by the 
time between sample dates; Figure 5-2). 
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Figure 5-2: Pictogram of the calculation of the Sen slope, which is used to estimate trend rates.   The 
seasonal Sen slope estimator (SSSE) is calculated in two steps. First, for each season, the median of all possible 
inter-observation slopes is calculated in same manner as shown in Panel B, but for data pertaining to 
observations in each individual season. Second, SSSE is calculated as the median of the seasonal values. 

Uncertainty in the assessed trend rate can be expressed by calculating its confidence interval 
following a methodology outlined in Helsel and Hirsch (1992). To calculate the 100(1-α)% two-sided 
symmetrical confidence interval about the fitted slope parameter, the ranks of the upper and lower 
confidence limits are determined, and the slopes associated with these observations are applied as 
the confidence intervals. 

The inter-observation slope cannot be definitively calculated between any combination of 
observations in which either one or both observations comprise censored values. Therefore, it is 
usual to remove the censor sign from the reported laboratory value and use just the ‘raw’ numeric 
component (i.e., <1 becomes 1)  multiplied by a factor (such as 0.5 for left-censored and 1.1 for 
right-censored values). This ensures that in the Sen slope calculations, any left-censored 
observations are always treated as values that are less than their ‘raw’ values and right censored 
observations are always treated as values that are greater than their ‘raw’ values. The inter-
observation slopes associated with the censored values are therefore imprecise (because they are 
calculated from the replacements). However, because the Sen slope is the median of all the inter-
observation slopes, the Sen slope is unlikely to be affected by censoring when a small proportion of 
observations are censored. As the proportion of censored values increase, the probability that the 
Sen slope is affected by censoring increases. 

Helsel (1990) estimated that the impact of censored values on the Sen slope is negligible when fewer 
than 15% of the values are censored. However, this is a rule of thumb and is not always true. 
Depending on the arrangement of the data, a small proportion of censored values (e.g., 15% or less) 
could affect the computation of a Sen slope (Helsel 2012). Alternatively, there may be a larger 
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proportion of censored values, but if the detection limit is small relative to the median of the non-
censored values, the impact of censored values on the Sen slope estimate is likely to be small. In the 
past, a proportion of censored values greater that 15% was used as a filtering rule (i.e., the trend 
was not assessed for the corresponding site/variable combination; see Section 3.2.2), but this is no 
longer recommended. Our current recommendation is to use all available observations, whether 
censored or not. The LWPTrends package provides an ‘analysis note’ with all calculated Sen slopes to 
indicate whether the reported Sen Slope is likely to be affected by censored values. Sen slope 
calculations that are affected by censored values indicate that the trend rate is smaller than can be 
detected given the detection limit. The precision of any Sen slope that has been calculated from at 
least one censored value is equal to the detection limit divided by the length of the time period 
(years). It is noted that the precision of Sen slopes that are not affected by censored values is equal 
to the precision with which the observations are reported divided by the length of the time period 
(years). In practice, these two levels of precision have the same or similar magnitude. 

5.3 Commentary 

5.3.1 Confidence in trend direction 
The approach to trend assessment recommended in this guidance is based on a long-standing 
traditional non-parametric approach to water quality trend assessment. However, we recommend a 
departure from the use of NHST as a method for assessing confidence in the assessment of trend 
direction in favour of the continuous measure of confidence in trend direction (𝐶). While this change 
is small in terms of implementation (and results), it is a conceptual shift that recognises the 
widespread criticisms of statistical significance testing (Greenland et al. 2016; Helsel et al. 2020; 
McBride 2019; McBride et al. 2014). 

The continuous measure of confidence in the assessed trend direction addresses two issues that 
were raised by McBride (2019). The first issue is a non-significant trend (i.e., failure to falsify a null 
hypothesis that “the trend is zero” for some nominated alpha value). This conclusion is often 
interpreted as evidence that the null hypothesis is true and therefore that the trend is zero or 
“stable”. This is an incorrect conclusion; a ‘large’ p-value (i.e., p > 0.05) indicates only that the data 
are not unusual if the null hypothesis were true, and none of the other assumptions were violated 
(Greenland et al. 2016). However, the same data would also not be unusual under many other 
hypotheses. 

The second issue highlighted by McBride (2019) is associated with the arbitrary classification of 
trends as significant or non-significant based on the significance level. The significance level (α) 
represents the probability of categorising a trend as non-significant when it is in fact significant (i.e., 
of rejecting the null hypothesis when in fact it is true). Generally, α is set at a low value (e.g., 0.05) to 
minimise the risk of incorrectly rejecting the null hypothesis (also known as a Type I error). However, 
from a management perspective, the acceptable Type 1 error risk should not be defined by an 
arbitrary statistical rule. This risk should include consideration of the probability of incorrectly 
assessing the trend direction, its rate and its consequence (such as impacts to environmental 
values)8. Therefore, the acceptable risk of a Type 1 error is a normative decision that should consider 
the importance of the environmental values that may be under threat from a trend, and the 
magnitude of the trend rate. A further problem with classifying trends for site/variable combinations 
as either significant or non-significant is that there is a loss of information about trend direction 

 
8 This is consistent with Section 3.20 of the NPS-FM 2020 which directs councils to “take action to halt or reverse degradation”, that is 
“proportionate to the likelihood and magnitude of the trend, the risk of adverse effects on the environment”. 
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compared to the alternative continuous measure of confidence in trend direction that we 
recommend. This is particularly relevant to regional and national applications involving trend 
assessments performed over many sites. The alternative continuous measure of confidence in trend 
direction can highlight a collective tendency in trend direction across sites even when numerous 
site-specific trends are non-significant at a nominated α value. 

McBride (2019) proposed a procedure to assess trend direction and confidence based on Sen slope 
regression. However, as outlined in Section 5.2.1, we recommend that trend direction assessment is 
undertaken based on the Mann Kendall or Seasonal Kendall statistic, rather than the Sen slope 
(although we recommend using Sen slope regressions for estimating trend rates). This is because the 
Mann Kendall and Seasonal Kendall assessments handle censored values more robustly than Sen 
slope regression. In simple terms, for all Mann Kendall assessments, it is sufficient to know whether 
there is a positive or negative difference between pairs of observations (see Helsel (2012) for 
details). In contrast for Sen slope calculations, the absolute difference between all pairs of 
observations must be known so that that the slopes can be calculated. While the absolute difference 
between a censored and non-censored value cannot be known, we can know whether that 
difference is positive or negative. Therefore, the Mann Kendall assessment makes more robust use 
of the data and this is the reason it is the recommended basis for assessing trend direction. When 
there are few censored values and ties in the data, confidence in trend direction (𝐶) is numerically 
equal to the approach of McBride (2019) based on the Sen slope. 

One of the criticisms of the use of the historic use of NHST in trend analysis made by McBride (2019) 
is that in reality, no trend is ever zero (there is always a trend no matter how small) and therefore 
the null hypothesis is unrealistic9. McBride (2019) and others (e.g., Cohen 1994; Jones and Tukey 
2000) distinguish nil hypotheses as hypotheses that propose no trend or no difference (e.g., 
between means). The problem with nil hypotheses, and their associated two-sided tests, is that they 
suggest that that the null hypothesis might be true and therefore encourage the incorrect 
interpretation of a non-significant result as indicating no trend. McBride's (2019) approach to trend 
direction assessment avoids the use of p-values entirely but has the disadvantage of not robustly 
handling censored values. Although the approach we recommend uses the two-sided test p-value to 
calculate the confidence in the trend direction (𝐶), it is not based on a hypothesis test. In addition, 𝐶 
quantifies the evidence that the trend is in the assessed direction (i.e., positive or negative) and 
therefore is consistent with McBride's (2019) principle that there is always a trend. An important 
point that arises from this is that there is nothing intrinsically bad or wrong about p-values, it is their 
misuse and misinterpretation that is the problem (Makowski et al. 2019). 

We also note that 𝐶 is numerically equivalent to a Bayesian index of effect existence called 
Probability of Direction, abbreviated as pd (Greenland and Poole 2013; Makowski et al. 2019). The 
pd index does not require a prior distribution, nor does it rely on a null hypothesis, and is 
mathematically defined as the proportion of the posterior distribution that is of the median’s sign 
(Makowski et al. 2019). The pd index can be interpreted as the probability that a parameter (such as 
S) is positive or negative and therefore has the same interpretation as 𝐶. The equivalence of C and 
pd can be explained in three steps. First, consider that the calculated value of S (Sobs) represents the 
best estimate of the actual population value (Spop or the ‘true trend’). The posterior distribution of 
Sobs is given by a normal distribution, with mean of Sobs and variance as calculated in Figure 5-1. 
Secondly, consider the probability that the calculated sign of Sobs is opposite to the population value 
Spop. This probability is indicated by area under the distribution where S has opposite sign to Sobs and 

 
9 We note however that because water quality data is reported to a fixed level of precision, Kendall’s S values of S can occur in practice. 
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is cut off by S equal to zero. This probability is equal to half the p-value of a two-tailed test because 
we are now concerned with whether S is positive or negative and not merely the extremity of the 
value. Finally, confidence is the probability that Sobs is the same as Spop and is therefore the 
complement (i.e., one minus) of half the p-value; this is equivalent to the area under the distribution 
for which S has the same direction as Sobs, which is the same value as pd. 

Recent publications in environmental science have used different language to describe the quantity 
that this guidance refers to as confidence in the trend direction (𝐶). For example, Choquette et al. 
(2019) and Murphy (2020) refer to C as Lk, “the likelihood the sign of the trend is correct”, and 
Larned et al. (2018a, b) refer to a mathematically related10 measure as “the probability the trend 
was increasing”. McBride (2019) described a quantity that is closely related11 to C as the “probability 
that the slope was truly below (or above) zero”. There is likely to be ongoing debate and 
development of ideas in this area. We recommend the interested reader refers to McBride (2019) 
for a full explanation of his trend direction assessment procedure and to Greenland et al. (2016) for 
a comprehensive discussion about the general interpretation (and misinterpretation) of p-values. 

5.3.2 Dealing with serial correlation 
For trend direction assessments, observations must be independent and not serially correlated. 
Serial correlation refers to the situation where the values of consecutive samples are correlated 
after accounting for the long-term trend in central tendency, regular cyclic fluctuations and 
covariates such as river flow. This situation can arise in water quality monitoring when consecutive 
samples are collected during discrete events such as floods and droughts, or when consecutive 
samples are taken from poorly mixed volumes of water. The presence of serial correlation can lead 
to an overestimation of the confidence in the evaluated trend direction. Hirsch and Slack (1984) 
proposed a modification to the traditional non-parametric method to account for serial correlation. 
They recommend using their modified method with datasets of > 10 years length. For shorter time 
periods, accounting for seasonality (as described in section 4.2) and using the seasonal variant of the 
Mann Kendall trend direction assessment will generally account for serial correlation. The 
TimeTrends package offers an option to use the Hirsch and Slack (1984) method, but it is 
recommended that serially adjusted p-values should not be used when considering whether there is 
a trend in a time-series of observations but should be used if the fitted model is being used to 
extrapolate beyond the measured data (i.e., to make predictions about future trends). A rationale 
for this recommendation is given in McBride (2005). However, as is the case for covariate 
adjustment (see Section 4.1), whether or not to adjust for serial correlation largely comes down to 
the purpose of the assessment; in the case that the purpose is purely to evaluate the observed trend 
over a specific time period, adjustment is not necessary (McBride 2005), whereas if attribution of 
the long term trends is of interest, then correction for serial correlation is important (see Helsel et al. 
2020, section 12.9). 

In our view, the risk that serial correlation will lead to severe overestimates of confidence in trend 
directions is minor for trend assessments based on SOE monitoring data. The strength of serial 
correlation typically decreases as the intervals between samples increases. Therefore, trend 
assessments based on data from high-frequency water quality sensors are more likely to be strongly 
affected by serial correlation than trend assessments based on monthly to annual sampling, as in 
SOE programmes. For analysts who are interested in estimating the serial correlation parameters of 
water quality trends, several standard statistical methods are available (e.g., see Darken et al. 2002). 

 
10 Where P(S>0)=p/2 and P(S<0)=1-p/2 where p was the two-tailed Mann Kendall or Seasonal Kendall p-value. 
11 McBride (2019) calculates this quantity as part of the Sen slope calculations. 
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5.3.3 Dealing with multiple censor limits 
Another important practical consideration in assessing both trend direction and rate is the 
treatment of multiple censoring levels. This is a relatively common occurrence, particularly for long-
term water quality records that span periods during which changes in instruments and analytical 
procedures have resulted in changes in detection limits. When a time-series includes multiple 
censoring levels, there is a risk that a trend will be detected that is an artefact of the changes in the 
censoring level rather than a change in the actual water quality within the time period. In our 
experience, multiple censoring levels are associated with detection limits (i.e., left censored data) 
and often occur due to changes in analytical methods for variables that are measured by laboratory 
analysis.  

One approach to handling multiple detection limits is to change all observations that are less than 
the highest detection limit to this value (i.e., change the value of these observations to the same 
value as the highest detection limit) across the entire time period. The assessment of trend direction 
and rate is then performed on these data. The disadvantage of this approach is that there is likely to 
be a loss of information, because all observed values that are less than the highest detection limit 
will be treated as numerically equal (i.e., as “tied values” or “ties”). The alternative approach is to 
carry out the assessment of trend direction and rate with the multiple detection limits. In this case, 
differences between observations that are the highest detection limit and non-censored values that 
are less than the highest detection limit are counted as discordant (Figure 5-1). In addition, 
differences between observations that are the highest detection limit and censored values that are 
less than the highest detection limit will be counted as discordant. This approach has the advantage 
of retaining all the information about the variability of the observations but the risk, described 
above, is that the change in detection limit produces a trend that is unrelated to an actual change in 
water quality. 

We recommend that expert judgement is used to decide on the most appropriate action (i.e., set all 
observations that are below the highest detection limit to that value or perform the analysis with 
multiple detection limits). There is no objective rule for choosing between these two options; the 
decision is a judgement that should be informed by inspection of the time series of observations and 
by taking into consideration the following questions:  

 Can the differences in detection limits be explained (i.e., were there changes in 
laboratory procedures)? (i.e., is the highest detection limit a data error or 
representative of an actual change in measurement?) 

 How many unique detection limits are there? 

 Do the changes to the detection limits occur as step changes or are they randomly 
distributed through the time period? 

 What proportion of the observations are associated with the detection limit change(s), 
and when in the time period did the changes(s) occur? 

 How many tied values would there be in the record, if all observations less than the 
highest detection limit were set to the largest detection limit? 

In cases where the highest detection limit can be attributed to a data error this should be corrected. 
Where there has been a step change in the detection limit and where a large proportion of 
observations are censored at the highest detection limit, the imposition of the highest detection 
limit across the entire time period is the best option. On the other hand, if the highest detection 
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limit applies to only a few observations within the assessment time period (e.g., as a result of the 
laboratory periodically reporting a ‘sample matrix effect’12 that prevented a reliable measurement to 
the specified method detection limit), and particularly if these are randomly distributed through the 
time period, the imposition of the highest detection limit may represent an unnecessary loss of 
information. In this case a better option is to retain multiple detection limits when carrying out the 
assessment of trend direction and rate because this maximises the information with low risk that a 
small number of censored observations with the high detection limit will unduly influence the trend. 
An example of dealing with a dataset comprising multiple detection limits is provided in Section 7.4. 

We recommend that for regional or national applications, data pertaining to each variable should be 
screened for step changes in detection limits. Detection limit changes will generally be consistent by 
region and water quality variable and associated with changes in laboratory procedures. If the 
change in the detection limit for a variable has potentially induced a trend at any of the sites that are 
included in a regional or national application, we recommend that all observations that are less than 
the highest detection limit be changed to this value (i.e., to the same value as the highest detection 
limit) across all sites. This will ensure consistent assessments across the sites and allow for robust 
comparison of trends between sites. For local applications, we recommend a site-specific approach 
to dealing with multiple detection limits by considering the questions listed above for each 
site/variable combination. Because the primary aim of a local application is to maximise the 
information about the trend for each individual site/variable combination, the analyst should choose 
to assess trend direction and rate with the multiple detection limits unless it is judged that the 
variable detection limits unduly influence the results of the trend assessment. Note that LWPTrends 
and TimeTrends have built in functionality that sets all observations that are less than the highest 
detection limit to that value (i.e., the first option described above; see Section 6.3.3 for details). 

We discourage use of the raw measurement values from laboratories in place of censored values for 
trend assessments. While councils may have received such advice and routinely receive both ‘raw’ 
and ‘official’ laboratory measurement values (where the latter presents censored values for any 
result below the analytical method detection limit), the precision of these raw values is very low 
relative to their numeric value (i.e., the uncertainty of measurement is very high). We therefore 
consider that these values are best considered as indistinguishable (i.e., analytically they are “ties”) 
to prevent them having an undue influence on the trend analysis. 

On a related note, water quality time-series may encompass periods in which the precision of values 
changes, or analytical methods change, with no change in censoring. In the first case, time-series 
may be characterised by numerous tied values early in the data record and fewer tied values later in 
the record. In the second case, there may be step-changes in a time-series corresponding to the 
change in methods. These situations need to be addressed on a case-by-case basis and we have no 
general guidance. In some cases, the variable of concern (or the site/variable combination) has been 
omitted from a trend assessment. To avoid these omissions, data adjustments could be considered 
(i.e., ensuring comparable precision over time by rounding high-precision values to match the lowest 
precision levels in the dataset). 

5.3.4 Future advances in trend analysis 
In future, new methods of trend analysis such as WRTDS (refer Section 2.3) are likely to be used in 
New Zealand. While these methods may provide benefits over the methods that are currently in 
widespread use, they will still require subjective decisions by the data analyst; these decisions are 

 
12 This refers to the combined effects of various components in the sample, other than the analyte (variable) being analysed. A common 
way to reduce a matrix effect is to dilute a sample, resulting in the reporting of a higher detection limit. 
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inherent in trend analysis, as described above. In addition, questions and debates about statistical 
inferences (e.g., frequentist versus Bayesian approaches to assessing confidence) will apply to these 
new methods as they do to the methods recommended in these guidelines. However, we believe 
that critical thinking about two issues is of greater immediate importance than adopting new 
statistical methods. First, further consideration should be given to how trend analyses are used and 
what information is needed from them. For example, a greater understanding of the trend rates that 
are of environmental and management importance is crucial. Assessing the importance of trend 
rates would provide context for reporting and for prioritising management actions. Establishing 
important trend rates would also help with the issues surrounding statistical inference. For example, 
this would enable the use of equivalence tests, which pose realistic hypotheses that are possibly 
true, namely, that a quantity of interest lies either within or beyond an “interval of indifference” 
(McBride 2019; 2005). The issue of trend importance when reporting on trend analysis is discussed 
further in Section 6.3.3. 

Second, further consideration should be given to causes of trends (i.e., attribution) and methods for 
carrying out attribution assessments. A robust understanding of the causes of water quality trends, 
both degrading and improving, will enable effective management actions to be prescribed to arrest 
and reverse degradation and drive recovery (Ryberg et al. 2018). 
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6 Reporting trend analyses 

6.1 Purpose 
The trend assessment procedures described in Section 5 produce four pieces of information that 
need to be reported for each site and variable combination: trend direction (the sign of S), 
confidence about the trend direction (C), trend rate (SSE or SSSE) and confidence about the trend 
rate. While this information alone can be informative in the case of a local application, it is often 
necessary to report trends across multiple sites and multiple water quality variables (e.g., regional 
and national applications). In these cases, effective metrics and techniques to summarise the results 
in tabular, graphical or map format are needed. Reporting aggregated summaries across sites (e.g., 
proportion of site increasing and decreasing, by variable) provide informative overviews of water 
quality changes over a domain of interest (e.g., the entire country, a region, other geographic or 
environmental classes).  

This section describes options for reporting the results of the four key outputs of trend assessments. 
We emphasise that it is important that the results are accompanied by thorough documentation of 
the methods used, including the choices and assumptions that have been made at each step in the 
assessment process. The methods should be described in sufficient detail that it is possible to 
identify why an alternative set of analyses arrives at different results.  We also note that for 
contextual purposes it is necessary to consider reporting current water quality state alongside 
temporal trend information. 

6.2 Recommended methods 

6.2.1 Reporting trend direction and confidence in trend direction 
One approach to communicating trend assessment results is reporting the trend direction and C 
directly (e.g., 91% confidence that the trend was increasing). Alternatively, C can be discretised into 
categories; this can be particularly useful when there is a need to summarise trends across a large 
number of sites. The simplest discretisation is to divide C into two categories based on whether 
confidence in the estimated direction is greater or less than a nominated level of confidence (e.g., 
0.90 indicating 90% confidence in trend direction). This binary classification is analogous to historical 
reporting of the results of trend analyses that were based on a test of statistical significance. Using 
this approach, confidence in a trend is categorised as either: 

 ‘direction established with confidence’ when C is greater than the nominated level of 
confidence; or  

 ‘trend direction not established at the X% confidence level’’ when C is less than the 
nominated level of confidence, 

respectively (McBride 2019). An example of more nuanced discretisation is given in Table 6-1, where 
C is divided into four categories, and each is assigned a narrative label to communicate the 
associated level of confidence. These three alternatives (continuous, binary and multi-category) are 
demonstrated graphically in Figure 6-1. 
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Table 6-1: Level of confidence categories used to convey confidence in trend direction.   These categories 
were suggested by Choquette et al. (2019). 

Categorical level of confidence the 
estimated direction is correct 

Range of C value 

Highly likely 0.95–1.0 

Very likely 0.90–0.95 

Likely 0.67–0.90 

Uncertain 0.50–0.67 

 

 

Figure 6-1: Graphical representation of three alternative ways of expressing confidence in trend direction.   
(a) A binary classification with the category boundary defined by a nominal confidence level of 95%. The blue 
shaded region indicates that trend direction was established with confidence, yellow indicates that the 
direction is not established with confidence. (b) Four categories, where the colours indicate confidence 
categories for the trend direction as described in Table 6-1. (c) Continuous confidence level ’C’. 

For reporting purposes, it can be useful to combine the trend direction and the confidence in 
direction into a single metric. This can be achieved by appending the trend direction to the 
categorical description of confidence. For example, a simple discretisation is to divide C into three 
categories based on a nominated level of confidence (e.g., 0.95) and increasing and decreasing (i.e., 
‘highly likely decreasing’, ‘direction not established with confidence’, and ‘highly likely increasing’. A 
larger number of direction and confidence categories can also be defined as shown in Table 6-2. 

Alternatively, the confidence in direction can be transformed into a continuous scale of confidence 
that the trend was decreasing (Cd). For all trends with S < 0, Cd = C, and for all S > 0 a transformation 
is applied so that Cd = 1-C. Cd ranges from 0 to 1.0 (Figure 6-2). When Cd is very small, a decreasing 
trend is highly unlikely, which because the outcomes are binary, is the same as an increasing trend is 
highly likely. 

The combined continuous measure of trend direction and confidence (Cd) can be discretised as 
shown in Table 6-2, but the categories need to cover the range of confidence from 0 to 1.0. The 
seven categories shown in Table 6-2 are based on modifications of the categories suggested by 
Choquette et al. (2019). McBride (2019) has suggested nine confidence categories as used by the 
International Panel for Climate Change (Mastrandrea et al. 2010). 
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Figure 6-2: Graphical representation of alternative categorisations of confidence level including trend 
direction. Key: (a) the blue shaded region indicates decreasing trends established at the 95% level of 
confidence, the red shaded region indicates increasing trends established at the 95% level of confidence, 
yellow indicates that trend direction could not be established at the 95% confidence level (b) the level of 
confidence categories as described in Table 6-2 and (c) the continuous confidence level that the trend is 
decreasing (Cd). 

Table 6-2: Suggested confidence categories in water quality trend are decreasing (Cd). 

Categorical combined confidence 
and trend direction 

Sign of S and value of C Categorical confidence trend 
was decreasing 

Value of Cd 

Highly likely decreasing Negative, 0.95–1.0 Highly likely 0.95–1.0 

Very likely decreasing Negative, 0.90–0.95 Very likely 0.90–0.95 

Likely decreasing Negative, 0.67–0.90 Likely 0.67–0.90 

As likely as not Negative or positive, 0.5–0.67 As likely as not 0.33–0.67 

Likely increasing Positive, 0.67–0.90 Unlikely 0.10–0.33 

Very likely increasing Positive, 0.90–0.95 Very unlikely 0.05–0.10 

Highly likely increasing Positive, 0.95–1.0 Highly unlikely 0–0.05 

6.2.2 Reporting trend rate and confidence in trend rate 
Trend rate analysis produces two key outputs, the SSE or SSSE value and the associated confidence 
interval, which are reported in the original units of the variable being assessed per year. The sign of 
these values indicates the trend direction and should be preserved. When reporting SSE and SSSE 
values for many variables it is often helpful to standardise the values by dividing by the median value 
of the observations over the analysis time-period. Trend rates that are made relative to the median 
in this way are often referred to as the relative SSE or SSSE (RSSE and RSSSE), which are reported as 
a percentage of the median value per year. A difficulty with standardisation in this way is that sites 
with observations that are very low values can produce very large values of RSSE and RSSSE. In these 
circumstances, the relative values are likely to be misleading and should be avoided as should the 
mixing of results that are reported with and without relativisation. 

Note that trend rates across many sites for a single variable can often vary by orders of magnitude. 
This can make displaying trend rates and their confidence intervals on maps or in graphs challenging.   

6.2.3 Reporting trend directions and rates for many sites 
Trend directions and rates for regional or national applications that concern many monitoring sites 
can be reported by tabulation and maps. Tabulation simply displays the relevant analysis results by 
site and variable (Table 6-3). Exhaustive tabulations for many variables and sites tend to be large and 
are better suited to appendices or supplementary data. 
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Table 6-3: Tabulation of trend assessment results for multiple site/variable combinations from a 
hypothetical lake water quality monitoring programme.  

Site Variable 
Median 
in trend 
period 

Units N 
Trend 

direction 

Confidence that 
trend is 

decreasing (%) 

SSE 

(units/yr) 

90% 
confidence 
limits for 

SSE 

RSSE 

(%/yr) 

Lake 
Jones 

Total N 1.77 mg/L 60 Decreasing 69 0.009 
-0.0039 to 

0.0085 
0.5 

Lake 
Smith 

Total N 1.85 
mg/L 

55 Decreasing 75 0.026 
-0.0005 to 

0.0017 
1.4 

Lake 
Clark 

Total N 2.60 
mg/L 

60 Increasing 22 0.023 0 to 0.0778 0.9 

Lake 
Baker 

Total N 0.15 
mg/L 

60 Decreasing 52 0.001 
-0.004 to -

0.0009 
0.4 

Lake 
Jones 

Secchi 
depth 

6.3 m 58 Increasing 31 0.139 
-0.062 to 

0.3808 
2.2 

Lake 
Smith 

Secchi 
depth 

7.0 m 55 Increasing 20 0.210 
0.0096 to 

0.174 
3.0 

Lake 
Clark 

Secchi 
depth 

4.9 m 58 Decreasing 83 0.044 
-0.0024 to 

0.0016 
0.9 

Lake 
Baker 

Secchi 
depth 8.5 m 58 Increasing 47 0.187 0.02 to 0.15 2.2 

Maps are a good graphical method for reporting trend assessment results for many sites. Maps for 
each variable that show sites colour coded by trend direction and confidence (𝐶ௗ) or by trend rate 
and direction convey a great deal of the information obtained from trend assessment. As the 
distributions of Cd are constrained between 0 and 1, this can help simplify plotting compared to 
mapping of Sen slope values, particularly across multiple variables (for which the units of the Sen 
slope can vary). It is noted that 𝐶ௗ and the combination of trend rate and direction are generally 
highly correlated and therefore maps will show similar patterns. Figure 6-3 shows a comparison of Cd 
and Sen slope rates from the results of a ten-year period trend assessment (2008-2017) of four 
water quality variables across 69 sites from NIWA’s National River Water Quality Network (NRWQN). 

 

Figure 6-3: Comparison of SSE and Cd for four variables at 69 NRWQN sites for a 10-year trend period.   
Error bars indicate the 90% confidence interval for the estimated Sen slope. 
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Maps can also show sites colour coded by discrete confidence categories (i.e., Table 6-1). The most 
suitable combination of mapping will vary with the application and depends on factors such as the 
number of sites and their spatial distribution; it is likely that each application will have a mapping 
solution that optimises communication of the results. Some examples are shown in Figure 6-4, 
Figure 6-5 and Figure 6-6, based on the categorisations of trend direction and confidence described 
in Section 6.2.1. The data shown in these plots are the results from a ten-year period trend 
assessment (2008–2017) for four water quality variables across 69 NRWQN sites. 

 

Figure 6-4: Maps of NRWQN sites summarising 10-year trends in four water quality variables.  The trends 
are categorised into three classes: decreasing – 95% confidence that the trend is decreasing; Increasing – 95% 
confidence that the trend is increasing; and  trend direction not established at the 95% confidence level. 

 

 

Figure 6-5: Maps of NRWQN sites summarising 10-year trends in four water quality variables categorised 
by trend direction and confidence in trend direction.  Shapes indicate trend direction and colours indicate 
confidence (C) in the trend direction. 
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Figure 6-6: Maps of NRWQN sites summarising 10-year trends in four water quality variables, categorised 
into seven classes based on confidence that the trend direction is decreasing (Cd).  

6.2.4 Trend aggregation 
Aggregated results of trend analyses performed for many sites (i.e., regional and national 
applications) reveal general patterns of water quality change over domains of interest such as the 
country, regions or environmental classes. The simplest types of aggregation are plots showing 
distributions of site values of either continuous measure of trend direction and confidence (𝐶ௗ) or 
the combination of trend rates and direction (Figure 6-7). For example, Larned et al. (2016) used box 
plots to show the distribution of trend rates and directions for a number of water quality variables 
for rivers grouped by River Environment Classification (REC) source-of-flow classes. 

Tabulation of site trends, categorised by direction and whether the trend was established at a 
specified level of confidence (generally 95%), and grouped by domains of interest is a simple method 
of aggregating trends that has been used in the past. However, this approach is not recommended 
because trends categorised as ‘direction not established with confidence’ nonetheless contain 
information about the probable direction of change that is effectively ignored by these tabulations. 
An extreme but plausible outcome is a situation in which, over many sites, no trend direction is 
established with confidence, but all trends are in the same direction at a lower level of confidence. 
The tabulation would show that all trends have insufficient data, implying that “nothing is known” 
about the aggregate trend direction. However, it is likely there is a general trend (i.e., the group of 
sites as a whole exhibit a trend). Tabulations of the combination of trend direction by more detailed 
confidence categories (e.g., Table 6-2) are more informative because they incorporate all 
information but are not the easiest way to convey the information, especially if multiple variables 
and domains of interest are involved. 
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Figure 6-7: Examples of box plots to describe distributions of trend direction and trend rate across many 
sites.   The top, middle and bottom rows show the confidence that the trend direction is decreasing (Cd), the 
absolute value of Sen slope estimator (SSE; units/year), and the relative Sen slope estimator (RSSE; %/year), 
respectively. 

The graphical method shown in Figure 6-8 is a better way to communicate aggregated trend 
direction and confidence information (Snelder and Fraser 2018). The method is based on evaluating 
the number of sites in confidence categories that subdivide the range in 𝐶ௗ such as those Table 6-2. 
Coarser or finer differentiation could also be used. A choice can be made to categorise confidence 
the trend was decreasing or to convert this to confidence the trend was improving. Confidence the 
trend was improving requires taking the complement of 𝐶ௗ for variables for which decreasing values 
indicate degradation, such as visual clarity and MCI scores. This subjective decision is discussed in 
Section 6.3.1. 

The proportion of sites in each confidence category is calculated for each domain of interest and each 
water quality variable. The results are then plotted as stacked bar charts where each bar is subdivided 
and coloured to represent the proportion of sites in each category and in the same order shown in 
Table 6-2. Different bars or plots can either represent different variables or different domains. 
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Figure 6-8: Example of stacked bar charts of categorical confidence that the trend was decreasing.   Trends 
are for 69 NRWQN sites, for a 10-year time period, as assessed by Larned et al. (2018a). 

6.3 Commentary 

6.3.1 Interpretation of trend direction 
Judgements about whether trend directions indicate either degradation or improvement is 
dependent on the variable and are subjective. For example, decreasing trends in nutrient and faecal 
microbe concentrations generally indicate improving conditions, whereas decreasing trends in other 
variables, particularly ‘ecosystem health’ indicators such as MCI scores, indicate degrading 
conditions. Subjectivity arises because judgements about trend direction implicitly incorporate 
values. For example, increasing water clarity would generally be interpreted as an improvement. 
However, increasing clarity downstream of a dam might indicate reduced sediment supply which 
may lead to undesirable changes in bed substrates (i.e., armouring of the bed). Subjectivity also 
arises because judgements about trend direction should ideally consider the baseline from which the 
trend is occurring. An obvious case where the baseline state is important is a trend in pH, for which a 
decreasing trend could indicate degradation or improvement, depending on the baseline. 

Notwithstanding the subjectivity, conversion of trend assessment results from increasing/decreasing 
into degrading or improving may be useful for reporting purposes (e.g., for the NPS-FM 2020 which 
refers to “deteriorating” trends). The conversion may reduce the possibility for confusion arising in 
tabulations, plots and maps that summarise trends across variables that have mixed directions 
indicating degradation and improvement (such as when trends in contaminant concentrations are 
reported alongside trends in MCI scores and visual clarity). Although there is a subjective element 
involved in assigning each increasing/decreasing trend to improving/degrading, this only needs one 
explanation after which all reporting tables, plots and maps are self-explanatory. By contrast, if 
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trends are reported as increasing/decreasing, the reader needs to be cognisant of the meaning of 
increases or decreases for each variable and for each table, plot or map. 

6.3.2 Ensuring consistency when comparing trends across many sites 
The methods for aggregating trend assessment results across multiple sites (i.e., for regional or 
national applications) described in Sections 6.2.3 and 6.2.4 assume that the trends that are being 
simultaneously reported are comparable. Refer to Section 3.3 for a discussion regarding ensuring 
trends adequately represent the time period and have consistent levels of statistical power. 

6.3.3 Interpretation of trend rate and confidence 
Historically, trend rates have been classified as environmentally important based on a nominal 
threshold applied to the RSSE or the RSSSE (e.g., Ballantine et al. 2010; Daughney and Reeves 2009; 
Scarsbrook 2006) or a rate of change that would cause a state threshold to be crossed within a 
specified period (e.g., Larned et al. 2015). These definitions of the environmental importance of a 
trend are arbitrary rules of thumb that may not be appropriate depending on the context. An 
example of the relevance of context is provided by considering a trend in an influential variable in a 
stream that is being managed for its significant ecological or cultural value. In this type of 
environment, any rate of degrading trend, especially where confidence in direction is high, might be 
judged important. We therefore consider that the trend importance is context specific and is also a 
subjective judgement for which we have no general guidance. 

The same considerations apply to trend confidence. If there is 80% or 90% confidence that there is a 
degrading trend in an influential variable in a stream that is being managed for its significant 
ecological or cultural value, then this may be judged as enough evidence to act. The subjective 
nature of this decision is an important reason that we recommend reporting confidence in trend 
direction (C) rather than the binary classification into ‘direction established with confidence’ and 
‘insufficient data’, which effectively reduces the information available to the decision maker. 

6.3.4 Combining state and trends 
The direction, confidence, and rate of trends by themselves are unlikely to provide all the 
information necessary to identify appropriate management responses (e.g., as required by the NPS-
FM). The water quality state (e.g., as described by the median of recent observations) also provides 
important information when considering actions that should be taken in response to a detected 
trend. Consider two sites that have equal management significance, and degrading trends of equal 
rate. If one site was in a pristine state and the other was already severely degraded, the 
management actions are likely to be different. The implication is that information about trends and 
state should be presented together and both types of information should be as accessible as 
possible. We do not offer any prescriptive guidelines about how state and trend information should 
be combined, but we do recommend that consideration is given to both characteristics. Figure 6-9 
shows an example of single plots with state and trend information combined for many sites. 
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Figure 6-9: Example showing the presentation of state and trend information on a single plot. Here the 
state is based on the median calculated from the final five years of the trend period to be generally consistent 
with state assessments (e.g., Larned et al. 2016, 2004). Error bars indicate the 90% confidence interval for the 
estimated Sen slope. A threshold or guideline could be added as a vertical line to aid interpretation of the 
median values. 
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7 Worked trend assessment examples 
The four worked examples in this section are designed to demonstrate trend assessments using 
TimeTrends and LWPTrends, and some of the issues that are frequently encountered when 
undertaking trend assessments in New Zealand. TimeTrends is a standalone trend assessment 
software package with a graphical user interface. LWPTrends is a library of functions that can be 
used with the ‘R’ statistical computing software (R Core Team 2019). 

Other analysis tools can also be used to implement the guidance provided in this document. 
LWPTrends and TimeTrends are freely available packages that have been developed in New Zealand 
for water quality data analysis and both have user communities. They are therefore recommended, 
especially for users with limited experience. 

Supplementary files to accompany the worked examples are available from the LWP website13. 
These files include the input data (as csv files) and an R script to reproduce the analyses using 
LWPTrends (version v2001). The csv data files can also be imported into TimeTrends.. We 
recommend that a new user consults the help files for the packages for more details. 

The analytical choices in the following four examples are representative of local applications (refer 
Section 2.2). Note that the four assessments are performed over the complete datasets provided, 
which leads to differences in trend period duration and start dates for each example. The examples 
explore the implications of some of the subjective choices that must be made in trend assessments . 
The same subjective choices need to be made in regional and national applications, but there are 
additional constraints associated with maximising consistency between analyses in these large-scale 
applications (see Section 2.2). 

7.1 Example 1: Flow adjusted, seasonal WQ variable 
Example 1 uses a river monitoring site with a long-term record of monthly chemical concentration 
observations. Simultaneous flow observations are available for the site. The example demonstrates a 
typical application of flow adjustment, seasonal assessment and trend assessment. 

Step 1: Examine raw data 

The raw data (i.e., the ‘as reported’ monthly concentration values) can be examined in LWPTrends 
using the function “Inspect Data”. “Inspect Data” also produces a tabular summary of the data. 

The raw data can be examined in TimeTrends by: Analysis>X-Y Plot>Points. The flow data associated 
with this dataset can also be added to the TimeTrends plot. TimeTrends provides descriptive 
statistics for the raw data by: Analysis>Descriptive statistics>Overall. 

Other packages could also be used to inspect the data (e.g., Excel, Matlab, Minitab, etc). 

The data summaries and plots produced by LWPTrends (Figure 7-1) and TimeTrends (Figure 7-2) 
show: 

 there are 25 years of monthly data with no gaps; 

 there is limited censoring (2 values below the detection limit for the entire time 
series); and 

 
13 http://landwaterpeople.co.nz/wp-content/uploads/2021/01/TrendGuidanceWorkedExamples.zip 
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 there is a seasonal pattern in observations, with the greatest values over winter. This 
seasonal pattern is also evident for the flow observations. 

 

 

Figure 7-1: Example 1 – LWPTrends raw data inspection plots.  

 

 

Figure 7-2: Example 1 – TimeTrends scatter plot of raw data.  
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Step 2: Covariate adjustment and seasonality assessment 

Because the dataset includes observations of flow, there is the possibility to flow adjust the raw 
observations if there is a meaningful relationship between flow and concentration. Flow adjustment 
is performed as a pre-processing step in LWPTrends, with the function ‘Adjust Values’. In 
TimeTrends, flow adjustment is an integrated component of seasonality testing and the trend 
evaluation. In TimeTrends, the relationship between the concentration and flow can be visualised 
using Analysis>X-Y Plots.  

In this example, LWPTrends was used to assess four alternative models of the relationship between 
concentration and flow: Log-Log, GAM, LOESS with a span (i.e., degree of smoothing) values of 0.9 
and 0.7. ‘Adjust Values’ returns a scatter plot of the raw concentration-flow data showing with the 
fitted models (Figure 7-3). 

 

Figure 7-3: Example 1 – scatterplot plot of concentration (value) and flow produced by LWPTrends.   The 
lines represent four alternative models fitted to these data to represent the relationship between 
concentration and flow. 

Based on the scatter plot of concentration versus flow, we selected the LOESS0.9 model. The LOESS 
0.7 and LOESS 0.9 produce very similar results, and when there are two models of similar 
performance, we would recommend selecting the simplest model (in this case LOESS0.9 as it has the 
widest span). When using LWPTrends, the residuals of all of the possible models (the “flow adjusted 
observations”) are returned from the ‘Adjust Values’ function and these are added to the data-frame 
of observations for subsequent analysis. 

The next step is to check for seasonality in the flow adjusted observations. For LWPTrends, 
seasonality is assessed using the function ‘SeasonalityTest’, and by specifying that the test is 
performed on the flow adjusted values. In TimeTrends, a seasonality test on flow adjusted data can 
be performed by Analysis>Seasonality test and selecting flow as a covariate, plus designating a 
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model type for the relationship. In Example 1, we chose to fit a ‘LOWESS’ model with ‘Lowess % of 
points fit’ set to 90% (note that this is the same smoothing parameter used when the data were flow 
adjusted above using the LWPTrends ‘Adjust Values’ function); all other values were left at the 
TimeTrends defaults. Both packages return box plots showing the distributions of observations 
within seasons (Figure 7-4, Figure 7-5), as well as details from the Kruskall-Wallis test used to 
evaluate the significance of any differences in distributions between seasons. Both packages indicate 
that even after flow adjustment, the data are seasonal (p<0.01). 

 

Figure 7-4: Example 1 – box plot of flow adjusted values by season produced by LWPTrends.   The black 
horizontal line in each box indicates the median of the observations, the box indicates the inter-quartile range, 
the whiskers indicate the 5th and 95th percentiles, and the dots indicate outliers. 
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Figure 7-5: Example 1 – box plot of flow adjusted values by season produced by TimeTrends.  

Step 3: Perform Trend Assessment 

Because the seasonality assessment indicates the observations are seasonal, the trend assessment is 
conducted using the Seasonal Kendall test and the Seasonal Sen slope. Both LWPTrends and 
TimeTrends perform these operations as part of one function. For LWPTrends, this analysis is 
performed using the function “SeasonalTrendAnalysis” (with “ValuesToUse” set to the flow adjusted 
values), and in TimeTrends using Analysis>Seasonal Kendall Test (with flow selected as a covariate). 
Both packages output a plot of the observations against time with the evaluated non-parametric 
(Sen) regression line superimposed (Figure 7-6, Figure 7-7). The LWPTrends package plots the results 
with the y-axis showing the flow adjusted values, whereas TimeTrends plots the raw values. The 
LWPTrends plot also includes a summary of the main statistics of the trend assessment. Both 
packages also output results tables. 

TimeTrends does not report confidence in trend direction but this can be calculated as one minus 
half of the p-value. TimeTrends also by default reports raw and flow adjusted trend results when a 
covariate is selected. To obtain the results of a non-flow adjusted trend using LWPTrends, the user 
would first need to evaluate whether the raw data were seasonal, and then proceed to use either 
the “SeasonalTrendAnalysis” or “NonSeasonalTrendAnalysis” functions, depending on the outcome 
of the seasonality assessment. There are small differences in the flow adjusted trend assessments 
from the two packages for this example – this is associated with differences in the models used to 
define the flow-concentration relationships. The resulting small changes in results are seen in the 
combined trend assessment outputs summarised in Table 7-1). This table includes the results from 
trend assessments based on the raw (non-flow adjusted) observations, as well as results for a trend 
assessment on the flow observations. 
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In this example the non-flow adjusted (raw) Sen slope is smaller than the flow adjusted Sen slope 
(although the confidence intervals do overlap). The trend assessment of the flow  (i.e., river 
discharge) provides some insight as to why this might be. There was a virtually certain decreasing 
trend in flow observations over the analysis period (data not shown). The relationship between flow 
and concentration  (Figure 7-3) indicates that lower flows are generally associated with lower 
concentrations at the monitoring site. Combined with a decreasing flow trend, we might expect this 
to generate a decreasing concentration trend. In this example, the trend in the raw concentration is 
increasing, but we see that the flow adjusted trend is larger than the raw trend; the decreasing trend 
in flow has reduced the upward trend in concentration. 

 

Figure 7-6: Example 1 – time-series of monthly flow adjusted observations and fitted non-parametric 
(Sen) regression line (and 90% confidence intervals) produced by LWPTrends.    

 

Figure 7-7: Example 1 – time-series of monthly flow adjusted observations and fitted non-parametric 
(Sen) regression line produced by TimeTrends.    
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Table 7-1: Tabulated results of trend assessment for Example 1.  

 
Kendall 
statistic 

Variance 
C (confidence 

in trend 
direction) 

Sen 
slope 

(annual) 

Percent 
annual 
change 

90% confidence 
limits for slope 

Direction 

LWPTrends 793 21979 1.00 0.021 1.639 0.015 to 0.028 Increasing 

TimeTrends 840 22000 1.00 0.022 1.657 0.016 to 0.027 Increasing 

TimeTrends        
(raw data) 668 21961 1.00 0.015 1.15 0.010 to 0.021 Increasing 

TimeTrends 
(flow adjusted data) 

-341 21999 0.99 -0.002 -0.88 -0.003 to 0  Decreasing 

7.2 Example 2: MCI trend 
Example 2 uses a river monitoring site with a long-term record of MCI observations. The sampling 
frequency has changed over time. The objective is to evaluate the long-term trend at the site. This 
example demonstrates a typical application to data with irregular monitoring frequency. 

Step 1: Examine raw data 

The raw data (i.e., MCI scores) can be examined using LWPTrends with the function “Inspect Data”. 
“Inspect Data” also produces a tabular summary of the data. 

The raw data can be examined in TimeTrends using: Analysis>X-Y Plot>Points. TimeTrends provides 
descriptive statistics for the raw data using: Analysis>Descriptive statistics>Overall.  

The data summaries and plots presented in Figures 7-8 and 7-9 indicate: 

 sampling frequency is irregular, but there has been at least one observation in spring 
and one in summer between September 1995 through to September 2017; 

 in the early part of the time series there are observations that appear to be near-
duplicates (the values are very similar, and the associated observation dates are no 
more than one month apart so it may be inappropriate to treat these as independent 
observations; and 

 there appears to be some seasonality, with values in spring (September-November) 
generally higher than those later in summer (January and February) (Figure 7-8). 

The irregular sampling frequency and the presence of dependent observations early in the data 
record require that some further data grooming is undertaken with careful consideration of the 
specification of seasons for the analysis prior to the trend evaluation. First, we identified 
observations that we considered to be dependent. These were observations that were less than two 
MCI units difference in magnitude and less than 40 days apart. For these pairs, we replaced the two 
rows of data with a median observation and median date (a groomed dataset with these values is 
provided with the example files). Second, we considered what appropriate seasons would be. 
Although trends in MCI are frequently analysed on annual “seasons”, this dataset contains more 
information than a single annual MCI value. However, the measurements are irregular, so defining a 
monthly season is likely to have many gaps and inconsistent representation of seasons as months. 
We therefore chose to implement two “seasons” in a year, “spring” (Jul-Dec) and “summer” (Jan-
Jun). Note that these decisions would be appropriate in an equivalent regional or national 
application provided all sites were treated the same way. 
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Figure 7-8: Example 2 – LWPTrends raw data inspection plots.  

 

Figure 7-9: Example 2 – TimeTrends scatter plot of raw data.  

Step 2: Seasonality assessment 

We checked for seasonality in the cleaned observations in LWPTrends using the function 
‘SeasonalityTest’, and in TimeTrends using Analysis>Seasonality test (selecting 2 seasons per year). 
Both packages return box plots to demonstrate distributions of observations within the specified 
seasons (Figure 10 and Figure 7-5), as well as the output from the Kruskall-Wallis test. Both packages 
suggest that the data are seasonal (p=0.015). 
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Figure 7-10: Example 2 – box plot of raw observations by season produced by LWPTrends.  The black 
horizontal line in each box indicates the median of the observations, the box indicates the inter-quartile range, 
the whiskers indicate the 5th and 95th percentiles, and the dots indicate outliers. 

 

 

Figure 7-11: Example 2 – box plot of observations by season produced by TimeTrends.  
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Step 3: Perform Trend Assessment 

Because the seasonality assessment indicates that the observations are seasonal, the trend 
assessment is conducted using the Seasonal Kendall assessment and the Seasonal Sen slope. We 
followed the procedure outlined in Example 1, with seasons in TimeTrends, (Analysis>Seasonal 
Kendall Test) set to “2 per year”. TimeTrends also offers an additional choice for trend assessments 
where there are multiple observations within a season. In the box describing “season definition”, at 
the bottom the user may select “Median value per season” (the default, and the only option in 
LWPTrends), or “All values in season”. The second option should only be chosen if the observations 
within the defined seasons are independent. The “All values in season” option increases the power 
of the assessment and treats values within the same season as ties in time (i.e., slopes are not 
calculated between these observations). We performed the trend assessment twice in TimeTrends 
to demonstrate the impact of this option. 

The plot produced by LWPTrends for this example is shown in Figure 7-12. The plots produced by 
TimeTrends, for the two alternative treatments of multiple observations within a season are shown 
in Figure 7-13 and Figure 7-14. Table 7-2 presents a summary  of the combined trend assessment 
outputs. 

Notable characteristics of these results are: 

 Using all observations, rather than using the median within a season, increases the 
confidence in the trend direction (C) and results in differences in the trend rate (i.e., 
the Sen slope) and the confidence in the rate (i.e., 90% confidence intervals for the 
Sen slope). 

 The exact magnitudes of the Sen slopes evaluated from the LWPTrends and 
TimeTrends packages differ slightly. This is due to slight differences in the way  dates 
are assigned to the median values when there are multiple observations for a season. 

 

Figure 7-12: Example 2 – time-series of observations and fitted non-parametric (Sen) regression line 
produced by LWPTrends.  
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Figure 7-13: Example 2 – time-series of observations and fitted non-parametric (Sen) regression line 
produced by TimeTrends using the “Median value per season” option.   

 

 

Figure 7-14: Example 2 – time-series of observations and fitted non-parametric (Sen) regression line 
produced by TimeTrends using the “All values in season” option.    

Table 7-2: Tabulated results of trend assessment for Example 2.  

 
Kendall 
statistic 

C (confidence in 
trend direction) 

Sen slope 
(annual) 

Percent 
annual 
change 

90% confidence 
limits for slope 

Direction 

LWPTrends 118 0.988 0.458 0.349 0.132 to 0.823 Increasing 

TimeTrends 
(median for 
period) 

118 0.988 0.462 0.352 0.133 to 0.823 Increasing 

TimeTrends (all 
independent 
observations) 

156 0.992 0.472 0.359 0.179 to 0.785 Increasing 
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7.3 Example 3: Missing data 
Example 3 uses a river monitoring site with a long-term record of observations of a chemical 
concentration. Simultaneous flow observations are available for the site. The purpose of the 
example is to demonstrate approaches to dealing with missing data. The dataset was created from a 
complete time-series of observations (monthly data) with several observations removed to create 
gaps in the time-series. We use the complete dataset at the end of the example to assess trend rate 
and direction to compare against the trend assessment for the dataset with gaps. 

Step 1: Examine raw data 

We generated plots to explore the raw data using both LWPTrends and TimeTrends following the 
procedure outlined in Example 1. The data summaries and plots, presented in Figure 7-15 and Figure 
7-16, show: 

 there are 10 years of monthly observations but a considerable proportion of sample 
intervals are gaps (~25% of all months), with these gaps tending to occur in the 
summer and winter (the last two years of data have no gaps); 

 there is no censoring in the record; and 

 it is unclear (from the scatter plot)whether there is a seasonal pattern, or a 
relationship between flow and concentration. 

 

 

Figure 7-15: Example 3 – LWPTrends raw data inspection plots.  
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Figure 7-16: Example 3 – TimeTrends scatter plot of raw data.  

There is a risk that if seasons are defined by months for the trend assessment, the assessment will 
be influenced by the large number of gaps, the bias of the gaps to certain times of the year, and the 
bias of the gaps to the earlier part of the record. An alternative approach would be to select a 
coarser definition of season so that the seasons are equally represented throughout the time period; 
although this has the disadvantage of reducing the total number of observations. For Example 3, 
trend analyses were performed with different definitions of seasons and the results were compared.  

Step 2: Covariate adjustment and seasonality assessment 

Because the example dataset includes observations of flow, there is the possibility to flow adjust the 
raw observations if there is a meaningful relationship between flow and concentration. Using 
LWPTrends we trialled four alternative models to describe the relationship between concentration 
and flow: Log-Log, GAM, LOESS(0.9 span), LOESS (0.7 span). The LWPTrends function ‘Adjust Values’ 
returns a plot of the observed values versus flow along with the fitted models (Figure 7-17). 

 

Figure 7-17: Example 3 – scatterplot of concentration and flow produced by LWPTrends.  The lines 
represent four alternative models fitted to these data to represent the relationship between concentration 
and flow. 
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Based on inspections of the scatterplot, fitted models (Figure 7-17), and the model diagnostics (R2 
and p-values), we concluded that flow adjustment of the data was not justified. Therefore, 
subsequent steps were conducted with the raw data. We performed a seasonality assessment based 
on both the monthly and bi-monthly data using both LWPTrends and TimeTrends. Only the 
seasonality plots from TimeTrends are provided (Figure 7-18, Figure 7-19) because both packages 
produced identical results. The p-values for the Kruskall-Wallis test were 0.312 and 0.153 for the 
monthly and bi-monthly seasons, respectively. Although these plots do indicate some seasonality, 
neither alternative met the recommended p-value criteria of 0.05. 

 

 

Figure 7-18: Example 3 – box plot of flow adjusted values by season produced by TimeTrends (seasons 
defined as months).  
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Figure 7-19: Example 3 – box plot of flow adjusted values by season produced by TimeTrends (seasons 
defined as bi-monthly, ‘summer’ and ‘winter’).  

Step 3: Perform Trend Assessment 

Because the seasonality assessment indicates the observations are not seasonal, the trend 
assessment is conducted using the Mann Kendall and the Sen slope assessments. For LWPTrends this 
is performed using the function “NonSeasonalTrendAnalysis”, and in TimeTrends using 
Analysis>Mann-Kendall trend test. We performed the analyses in both packages first with seasons 
set to months, and then again with bi-monthly seasons. Note that the supplementary files contain 
the original complete dataset in the (“Example 3 – complete.csv”) to allow comparison of the results 
with the complete dataset. The plots produced by LWPTrends for this example, for the two 
alternative season designations, are shown in Figure 7-20 and Figure 7-21. The combined trend 
assessment outputs from both packages are summarised in Table 7-3. 
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Figure 7-20: Example 3 – time-series of flow adjusted observations and fitted non-parametric (Sen) 
regression line produced by LWPTrends (seasons defined as months).    

 

 

Figure 7-21: Example 3 – time-series of flow adjusted observations and fitted non-parametric (Sen) 
regression line produced by LWPTrends (seasons defined as bi-monthly, ‘summer’ and ‘winter’).   
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Table 7-3: Tabulated results of trend assessment for Example 3.  

 
Kendall 
statistic 

C (Confidence in 
trend direction) 

Sen slope 
(annual) 

Percent annual 
change 

90% confidence 
limits for slope Direction 

LWPTrends (monthly) -307 0.858 -0.017 -0.603 -0.049 to 0 Decreasing 

TimeTrends (monthly) -307 0.858 -0.017 -0.603 -0.049 to 0 Decreasing 

LWPTrends (bi-monthly) -184 0.891 -0.022 -0.780 -0.060 to 0.004 Decreasing 

TimeTrends (bi-monthly) -180 0.886 -0.022 -0.809 -0.060 to 0.005 Decreasing 

There were a number of subjective decisions made in the above trend assessment including:  

1. the use of p=0.05 as the cut-off threshold for identifying seasonality; 

2. the choice of seasons; and 

3. if seasons are less frequent than monthly, whether or not to use the median for the 
season or to use all datapoints (only an option in TimeTrends). 

To explore the implications of these choices, we compared eight alternative analyses performed 
using TimeTrends, using the seasonal and non-seasonal variants of: (1) the complete dataset with 
seasons as months; (2) the dataset with gaps and seasons as months; (3) the dataset with gaps, bi-
monthly seasons and median values for seasons; and (4) the dataset with gaps, bi-monthly seasons 
and all data points. The results from these eight alternatives are summarised in Table 7-4. 

Table 7-4 indicates there are small differences in the confidence in trend direction and the trend rate 
(Sen slope) across the range of analysis options. An appropriate conclusion is that it is at least likely 
(see Table 6-1) that there is a decreasing trend in the concentration at this site. 

Table 7-4: Tabulated results of trend assessment for Example 3 for eight alternative analyses. Highlighted 
rows are based on the original complete dataset. All other rows are based on the data with gaps. 

 Season 
Kendall 
statistic 

C (Confidence in 
trend direction) 

Sen slope 
(annual) 

Percent 
annual 
change 

90% confidence 
limits for slope 

Non-seasonal 
assessment 

Monthly -672 0.937 -0.024 -0.856 -0.054 to 0  

Monthly -307 0.858 -0.017 -0.603 -0.049 to 0 

Bi-monthly (a) -180 0.886 -0.022 -0.809 -0.060 to 0.005 

Bi-monthly (b) -298 0.851 -0.016 -0.586 -0.049 to 0 

Seasonal 
Assessment 

Monthly -65 0.953 -0.020 -0.716 -0.050 to 0 

Monthly -37 0.900 -0.020 -0.714 -0.050 to 0 

Bi-monthly (a)  -37 0.917 -0.020 -0.752 -0.051 to 0 

Bi-monthly (b)  -54 0.843 -0.020 -0.708 -0.050 to 0 

Notes: (a) median taken for seasons; (b) all data used within seasons. 

7.4 Example 4: High censoring 
Example 4 uses a river monitoring site with a long-term record of a chemical concentration. Flow 
observations are not available for the site. The detection limit changed part way through the record. 
The purpose of the example is to demonstrate choices around handling changing detection limits in 
an analysis. The example data file contains three alternative versions of the observation time series: 
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“Value” – detection limits decrease half-way through the observation period; “Value1” – detection 
limits increase halfway through the time period; “Value2” – no censored observations. The analysis 
steps are only shown for the first dataset but results for all three datasets are presented for 
comparison at the end of the example. 

Step 1: Examine raw data 

We generated plots to examine the raw data using both LWPTrends and TimeTrends following the 
procedure outlined in Example 1. The data summaries and plots produced by the LWPTrends 
package (Figure 7-22) indicate: 

 there are 10 years of monthly data with one gap; 

 approximately 40% of the observations are censored, with almost 60% of observations 
censored over the first five years; 

 the detection limit has changed halfway through the period from 0.015 to 0.01; and 

 there appears to be some seasonality in the observations, with higher concentrations 
in the summer months and lowest concentrations (and greatest prevalence of 
censoring) in the spring months. 

 

Figure 7-22: Example 5 – LWPTrends raw data inspection plots.  
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Step 2: Covariate adjustment and seasonality assessment 

We checked the seasonality of the data with seasons defined by months using both LWPTrends and 
TimeTrends as described for Example 1. TimeTrends issued two warnings for this analysis: “Warning 
- more than 20% of data are censored”; and “Insufficient uncensored data in variable for evaluation 
of censored values using ROS. Substituted values used instead. If using a seasonal analysis consider 
using a longer season”. If the warnings are suppressed, the analysis continues. Both packages 
indicate that the data are seasonal (Figure 7-23, Figure 7-24), with the p-value from the Kruskal-
Wallis test <0.002. 

 

Figure 7-23: Example 4 – box plot of flow adjusted values by season produced by LWPTrends.  The black 
horizontal line in each box indicates the median of the observations, the box indicates the inter-quartile range, 
the whiskers indicate the 5th and 95th percentiles, and the dots indicate outliers. 

 

 

Figure 7-24: Example 4 – box plot of flow adjusted values by season produced by TimeTrends.  
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Step 3: Perform Trend Assessment 

Because the seasonality assessment indicates that the observations are seasonal, the trend 
assessment is conducted using the Seasonal Kendall test and the Seasonal Sen slope. Using 
LWPTrends, the assessment is performed using the function “SeasonalTrendAnalysis”, and in 
TimeTrends using Analysis>Seasonal Kendall Test (with the box “Use censored values for slope 
calculation” checked). The hi censoring filter is implemented in LWPTrends by adding an argument 
to the “SeasonalTrendAnalysis” function: HiCensor=TRUE, and in TimeTrends by checking the box 
“Set all values (censored or otherwise) less than the highest detection limit as censored at the 
highest detection limit”. See Section 3-2for an explanation of how the censored values are treated 
when these options are selected.  

Plots produced by LWPTrends showing the raw data with the assessed seasonal Sen slope are shown 
in Figure 7-25 and Figure 7-26 for the assessments without and with the hi censor filter, respectively. 
A summary of the trend assessment outputs from both packages is provided in Table 7-5. 

The results from the two packages are consistent with each other, although there are some small 
differences in the calculated variances, confidence levels and SSE confidence intervals. In this 
example, the implementation of the hi censor filter had very little impact on the assessment results.  
A noteworthy result of the assessment is that the direction of the trend, as indicated by the S 
statistic, is not consistent with the direction of the trend indicated by the confidence intervals of the 
Sen slope. This can occur when there are many tied values in the observations; either due to many 
censored values or the values in the data having low precision relative to the distribution of the 
observations. This outcome is not a cause for concern and simply indicates that the trend is small 
compared to the information provided by the data. Assuming that laboratory methods to measure 
water quality are fit for purpose (i.e., appropriate precision to measure concentrations at the levels 
of interest), then this issue will only arise at those sites with low concentrations and small trends. 

Table 7-5: Tabulated results of trend assessment for Example 4.  

 
Kendall 
statistic 

C (Confidence 
in trend 

direction) 

Sen slope 
(annual) 

Percent 
annual 
change 

90% confidence 
limits for slope 

Direction 

TimeTrends -6 0.556 0 0 0 to 0.0004 Decreasing 

TimeTrends (HI censor) -6 0.563 0 0 0 to 0.0004 Decreasing 

LWPTrends -6 0.557 0 0 0 to 0.0004 Decreasing 

LWPTrends (Hi censor) -6 0.568 0 0 0 to 0 Decreasing 

The designation of trend direction in Table 7-5 is based on an interpretation of the sign of S. 
TimeTrends returned two alternative narratives to describe “Trend direction and confidence”, one 
associated with the Mann Kendall test (“Trend unlikely”) and one associated with the Seasonal Sen 
slope estimate (“Increasing trend possible”). LWP Trends issued a warning associated with the 
Seasonal Sen slope estimate: “WARNING: Sen slope influenced by censored values”. 
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Figure 7-25: Example 4 – time-series of observations and fitted non-parametric (Sen) regression line 
produced by LWPTrends. Note the change in detection limit in 2013. 

 

 

Figure 7-26: Example 4 – time-series of observations and fitted non-parametric (Sen) regression line 
produced by LWPTrends.  Note the hi-censor limit filter has been applied in this case which has reduced all 
values prior to the change in the detection limit in 2013 to the new detection limit (compare with Figure 7-25). 
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For comparison, we have also performed trend assessments for Example 4 based on the additional 
two datasets provided in the example file (one where the change in detection limit goes from low to 
high, and the other being the original data with no censoring). The results for the trend assessments 
for all three datasets (as analysed using TimeTrends) are summarised Table 7-6. Note, applying the 
hi-censor filter for first two datasets produces the same result as they both have the same maximum 
detection limit. 

It is interesting to note that, while the confidence intervals for all Sen slopes are consistent, the 
directions from the assessments are inconsistent. When there are no censored values (Complete set, 
“Value2”), the trend is assessed as increasing, whereas the hi-censor filter and the dataset with a 
step change in detection limit from a higher to lower value (“Value”) indicates a decreasing trend, 
and the dataset with a step change from a low to high detection limit (“Value1”) has an 
indeterminate trend. Censoring also significantly reduces the confidence in the assessed trend 
direction. Despite these apparent inconsistencies, the conclusions that a pragmatic user would make 
for all four assessments are: (1) the site has good water quality (evidenced by the frequency that 
observations are below the detection limit) and (2) the trend is very small, and hence the “direction” 
is likely to have limited practical consequence. 

Table 7-6: Example 3 – Trend assessment results from TimeTrends exploring the impact of the direction 
of step change in detection limit, the implementation of the hi-censor filter, and based on the complete, 
uncensored dataset.  

Dataset 
Kendall 
statistic 

C (Confidence 
in trend 

direction) 

Sen slope 
(annual) 

Percent 
annual 
change 

90% confidence 
limits for slope 

Direction 

High to low DL (“Value”) -6 0.556 0 0 0 to 0.0004 Decreasing 

Low to high DL (“Value1”) 1 0.5 0 0 0 to 0.0003 Indeterminate 

Hi-censor filter -6 0.563 0 0 0 to 0.0004 Decreasing 

Complete set (“Value2”) 35 0.815 0.0001 0.43 0 to 0.0004 Increasing 
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9 Glossary of abbreviations and terms 
 

Term Description 

Censored 
values 

Measurements of water quality variables that are too low or too high to be measured 
with precision. The “detection limit” is the lowest value that can be reliably measured by 
an analysis and the “reporting limit” is the greatest value of a variable that can be reliably 
measured. Values that are reported as either the detection limit or reporting limit are 
referred to as censored.  

Confidence (C) The evaluated trend direction confidence level. C can be understood as the probability 
that the assessed trend direction is the same as the true trend (or that the assessed 
direction is correct). C varies between 0.5 (low confidence) and 1 (high confidence). 

Covariate 
adjustment 

A statistical analysis that is applied to the time series of water quality observations to 
remove the variation that is explained by another observed variable. When the other 
variable is river flow, this analysis is known as flow adjustment.  

Filtering rules Rules that define the acceptable proportion of gaps and representation of sample 
intervals by observations within the time period. Also referred to as ‘site screening 
criteria’ and ‘completeness criteria’. 

Local 
application 

An application in which the objective is to extract as much information as possible about 
the trend direction and rate from the available data for a single (or for each) site/variable 
combination.  

Monotonic Model of the behaviour of the water quality variable through time that is constrained to 
be either constantly increasing or decreasing. 

National 
application 

An application in which the objective is to assess and report trends across many sites and 
variables using data obtained from several regional SOE monitoring programmes. The 
objective is to allow robust comparison of trends between sites and to provide a synoptic 
assessment of trends across the whole country. 

Non-parametric 
model 

A statistical model for which there is no assumptions concerning the distribution of the 
data. 

Parametric 
model 

A statistical model for which there is an assumption that the data have an underlying 
distribution (e.g., that the data are normally distributed).  

Regional 
application 

An application in which the objective is to assess and report trends across many sites and 
variables using data from a regional SOE monitoring programme (or similar). The 
objective is to allow robust comparison of trends between sites and to provide a synoptic 
assessment of trends across a whole region. 

Sample interval  A specific time interval in which an observation occurs that is defined by each season 
within each year.  

Season Water quality observations generally have a set frequency, which is determined by the 
sampling frequency (e.g., monthly, quarterly). The trend assessment ‘season’ is generally 
specified to match this frequency (e.g., seasons are months or quarters). In some 
circumstances, the temporal resolution of the data is coarsened, for example, monthly 
data is coarsened to quarterly.  

Time period The interval of time over which a trend is assessed.  

Traditional 
non-parametric 
method 

The approach to water quality trend assessment recommended by these guidelines. The 
statistical robustness of the traditional non-parametric method make it the “safest” 
option for the three types of trend applications identified by these guidelines (i.e., local, 
regional and national applications). 

Trend Behaviour of a variable over time. In this guidance a trend is quantified by the direction 
and rate of change.  
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Term Description 

Trend direction  The direction of the trend; either increasing or decreasing.  

Trend rate The assessed rate of change of the trend. The units are those of the water quality variable 
being analysed per unit time (which is generally expressed as years).  
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Appendix A Supplementary data preparation guidance 
Note: This guidance largely relates to the preparation of data from multiple sources (e.g., for inter-
regional or national reporting). However, many of the steps are useful for assessing long-term 
records of data from the same source, particularly where there has been a change in sampling, 
analytical or data management methodology over time. The National Environmental Monitoring 
Standard for Water Quality (NEMS 2019)14 also provides guidance that can assist with implementing 
some of the steps described here.  

A1  Ensuring consistent data structure 

A1.1 Purpose 
Aggregating data and metadata from multiple sources inevitably results in inconsistencies in data 
structure, including dissimilar data matrices (i.e., arrangements of data in rows and columns) and 
multiple forms of variable names, geographic coordinates, date and time formats, units of 
measurement, and other metadata elements. Rearranging data into an internally consistent 
structure and applying consistent labels, formats and units are the first steps in data processing. 
Consistency in data structure is needed for sorting, searching, manipulating and displaying data, 
updating and exporting datasets, and carrying out statistical analyses. General principles for data 
organisation and recommendations for consistent metadata elements are set out in several recent 
publications (e.g., Hart et al. 2016; Sprague et al. 2017; Wickham 2014). 

A1.2 Method 
A. Organise data into a consistent dataset 

An example of a tidy and consistent dataset is shown in Figure A-1, where each row represents a 
single observation and columns store information about the site, the “raw” observed data15 and the 
tidied final data after applying rules to ensure consistency of metadata (e.g., variable names, units). 
Storing data in a “long” data table is preferable over a “wide” data table (i.e., each row represents a 
single site x date combination with separate columns holding the values for each variable) as it 
allows additional metadata (e.g., collection and analytical methods, units, censorship status) to be 
stored with each observation. Using such a format can assist with identifying and correcting data 
consistency issues, such as inconsistent units between observations of the same variable. In 
addition, storing the “raw” data alongside the “tidied” data can help identify errors or 
inconsistencies that may have been inadvertently added during the tidying process. Data should 
always be stored as numeric values or text and never as colours or other formatting within a 
spreadsheet as these are easily missed, particularly if the data are to be analysed using a scripting 
language. Data can be organised into a consistent data table using automated “data tidying” 
procedures such as the R tidyverse package, or manually by copying, pasting and transposing data 
from different sources into a single data table (Broman and Woo 2018; Ellis and Leek 2018). 

 

 
14 There are four parts to the Standard, addressing discrete water quality sampling and measurement (including field and laboratory 
procedures and instruments) for each of groundwater, rivers, lakes and coastal waters. See: http://www.nems.org.nz  
 

15 “Raw” as used here applies to the data as received from the data source/supplier. We recognise that these data may already have been 
modified in some way as part of internal QA/QC procedures. 
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Figure A-1: Example of a “tidy” water quality dataset.   Each row represents a single data observation with columns recording the minimal required information for the 
site, the “raw” observation data as provided by the original source and the tidied observation data after converting to consistent variables names and units. The “censor” 
column denotes whether the original data were censored (< or >), while the “data_flag” column indicates whether records are duplicated (e.g., records 3 & 4 are identical), 
have been identified as outliers (e.g., record 6) or should be ignored (e.g., record 5 is missing date information). The “multiplier” column indicates the value used to adjust 
the original observed value to standardised units (e.g., 0.001 x 7 mg/m3 = 0.007 g/m3). 
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B. Apply consistent metadata elements 

Using a consistent format for metadata within a dataset is important for ensuring that data are 
collated and analysed appropriately, particularly if the data are to be given to someone else for 
analysis. Development of a “data dictionary” to accompany the tidy dataset that documents the 
definition of metadata (e.g., quality code definitions) is also recommended. While it is most 
important that the dataset is internally consistent, we provide some guidelines for suggested 
metadata formats below.  

1. Missing data  

Missing values should be represented by a consistent fixed code (e.g., NA or a hyphen) to 
help distinguish between those values that are truly missing (e.g., not recorded) and those 
that are unintentionally missing (Broman and Woo 2018). Numeric values (e.g., 999 or -999) 
should not be used to denote missing values as they are easy to miss and may inadvertently 
be included in subsequent analyses as real data. Notes about why data are missing should 
always be included in a separate comments column and not inserted in place of the data. 

2. Site name and IDs 

Ensure that site names are informative and spelt consistently across the dataset. This is 
particularly important if you are combining data from multiple datasets. Specific issues to 
watch for include: 

 inconsistent capitalisation; 

 the use of at vs @; 

 abbreviations of words such as Bridge to Br. or Road to Rd; and 

 site IDs (e.g., ARC-00001) which should have a consistent format – check for 
inconsistencies in underscores, hyphens, spaces and capitalisation. 

3. Site coordinates 

Ideally all coordinates representing site locations are recorded in the same coordinate 
system. Coordinate systems commonly used in New Zealand include latitude and longitude in 
decimal degrees using the World Geodetic System (WGS84, EPSG: 4326), or northing and 
easting in NZ Transverse Mercator (NZTM, EPSG: 2193) or NZ Map Grid (NZMG; EPSG: 
27200). Coordinates can be converted from one coordinate system to another using tools 
such as R, ArcGIS or online converters (e.g., https://epsg.io/). It is good practise to include a 
column that specifies which coordinate system is used, particularly if the original datasets 
include coordinates from different sources. 

4. Date and time format 

Dates and times should be saved in a consistent format, preferably using the ISO 8601 format 
(e.g., “yyyy-mm-dd” and “hh:mm”). Consistent with National Environmental Monitoring 
Standards (NEMS) requirements, times should be recorded in 24-hour time (e.g., 18:00 
rather than 6:00 pm). Use caution when working with files in Microsoft Excel as date formats 
may be altered automatically when you open the file and it can be difficult to undo the 
changes (Broman and Woo 2018). 
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5. Variable names 

Use a consistent naming convention to describe each measured variable (e.g., NH4N, NO3N, 
TN – see the NEMS Water Quality for recommended naming conventions). Each observation 
should also be accompanied with a record of the measurement and analytical methods 
where possible. Units should always be stored in a separate column from the variable name 
(see below). 

6. Measurement units 

Convert multiple measurement units for individual variables to a single, consistent unit for all 
observations. In some cases, two units are synonyms (e.g., mg/L (or g/m3) and PPM, µg/L and 
mg/m3), and the only requirement is to apply one label consistently. In other cases, shifting 
to consistent units requires data conversions (e.g., converting from mg/m3 to mg/L or, in the 
case of conductivity, from perhaps mS/m to mS/cm or µS/cm). It is good practise to add a 
conversion column to your data that records the multiplier used to convert from one unit to 
another (e.g., 0.001 to convert from mg/m3 to g/m3). This helps to trace any potential errors 
that may inadvertently be introduced in the data tidying process. 

7. Censored data and quality codes 

Information about censoring of numeric data and codes that describe data quality should be 
stored in separate columns from the measurement values. Use consistent formatting for 
censorship flags (e.g., < or >) and ensure that the meaning of quality codes is clear. 

A1.3 Commentary 
Inconsistent or ambiguous variable and site names, data formats, measurement units, and other 
metadata elements are very common in aggregated water quality and ecology datasets. For the most 
commonly measured variables in New Zealand freshwater monitoring, multiple names are in 
widespread use (e.g., dissolved reactive phosphorus, soluble reactive phosphorus, filterable reactive 
phosphate, orthophosphate and PO4 are all used to refer to the same measurement). Common 
examples of ambiguous nomenclature include:  

1. The use of ‘nitrate’, ‘ammonium’, and ‘phosphate’ without indicating whether the 
corresponding values refer to ion concentrations (NO3

-, NH4
+, PO4

3- ) or elemental 
concentrations (NO3

--N, NH4
+-N, PO4

3--P). 

2. The use of “total nitrogen” to refer variously to Kjeldahl nitrogen (organic nitrogen plus 
ammoniacal nitrogen), total dissolved nitrogen in filtered samples, and total nitrogen 
in unfiltered samples. 

3. The use of “EPT” (invertebrates from the orders Ephemeroptera, Plecoptera, and 
Trichoptera) without indicating whether the values correspond to number of EPT taxa, 
percent of EPT taxa or percent of EPT individuals.  

When ambiguities cannot be resolved by communicating with the data provider, the data analyst is 
faced with a choice between guessing the specific meaning of the variable name or omitting the 
data. Both choices are problematical; the first raises a risk of introducing errors into the data, and the 
second results in a reduced dataset size, and in some cases, the loss of site × variable combinations. 
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Some common water quality variables are unitless (e.g., pH, trophic level index, MCI score), but most 
are reported using measurement units (e.g., concentration in mg/m3 or mg/L). Missing units are a 
common problem in water quality datasets. As with ambiguous variable names, missing units must 
be added if possible or the affected data omitted. 

A2 Correcting data errors16 

A2.1 Purpose 
Data errors are common in water quality and ecology datasets and can originate at many steps in the 
sampling, measuring and recording process. Among the most common causes of data errors are 
faulty or poorly calibrated field and laboratory sensors, sample contamination, calculation errors and 
data-entry errors (Davies-Colley et al. 2012, 2019; Rangeti et al. 2015; Rode and Suhr 2007). The 
resulting data errors include extreme values (for a given variable), negative values, zeros, non-
numeric or alphanumeric entries, and strings of repeated values. The NEMS (2019) for Water Quality 
includes quality assurance (QA) and quality control (QC) guidance and a process for assigning a 
quality code to individual water quality measurements. With increasing uptake of the NEMS and the 
passage of time, this should see a reduction in erroneous data in water quality databases and 
assignment of a ‘flag’ against data that are potentially erroneous or of lower quality. However, errors 
will still be present in time-series used for trend assessments (as these time-series often extend back 
over a decade) and some errors will still occur in the future. Therefore, data analysts must still assess 
all data for errors and, where possible, correct these errors prior to data analysis.  Data error 
correction occurs in three steps: screening data for potential errors, distinguishing between errors 
and valid data entries, and correcting the data deemed to actually be erroneous. 

There are multiple approaches for screening data for potential errors, including algorithm-based data 
flagging systems that flag anomalous values, graphical approaches for identifying anomalous values, 
and statistical outlier tests. Note that these approaches will identify obvious errors, but incorrect 
entries that do not appear unusual (e.g., fall within the expected range) will not be detected. 

After screening data, some assessment is required to determine which of the potential errors are in 
fact errors (or highly likely to be errors), and which are valid data entries. This step may involve 
rechecking laboratory and field data sheets, assessing scientific inconsistencies (e.g., DIN 
concentrations higher than TN concentrations in individual samples, elevated NO3N concentrations 
in samples from hypoxic or anoxic environments), and investigating possible explanations for 
anomalous but valid data (e.g., step changes in time series due to land use change). Consideration of 
NEMS (or other) data quality codes at this step may be helpful if they are present. 

Once confirmed, data errors are corrected by reformatting, conversion (e.g., from ion concentrations 
to elemental concentrations), as well as removing or replacing erroneous data entries. Some water 
quality data processing routines automate the entire data checking and correction process. However, 
we recommend manual correction to minimise the risk of removing or altering valid data entries. 

A2.2 Method 
Where possible, we recommend using an initial automated data processing script to flag potential 
anomalous data entries, followed by a manual checking process to assess whether flagged records do 
in fact represent errors. Potential and actual errors should be identified within the tidy dataset in a 
column that contains a pre-determined set of flags. These allow erroneous records to be removed 

 
16 The guidance provided here generally assumes that the data lack any formal ‘quality stamp’, such as a NEMS (2019) quality code. 
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prior to subsequent analysis, while retaining a record of why they were removed. We suggest that 
the following flags be used, with a data dictionary created to record their specific definition: 

 ok: records that pass the error checking procedure. 

 ignore: records that should be removed before the final analysis. Reasons for use may 
include non-numeric or impossible data, missing metadata, duplicate records or 
incompatible measurement or analytical methods. 

 outlier: numeric measurement values that fall outside the expected range after 
checking for issues such as incorrect units. 

 composite: use if multiple measurements on the same date have been combined (e.g., 
daily mean) or if data are calculated from multiple measured variables (e.g., MCI or 
TLI). 

 synthetic: use if a measurement value is missing but has been estimated or inferred 
from a known existing relationship with another variable (e.g., visual clarity based on 
an established relationship with turbidity or suspended sediment). 

Suggested steps for error checking and processing errors in measurement data (also see the NEMS 
Water Quality) 
 

1. Identify and inspect non-numeric measurement data. These data often occur when censor 
flags or other metadata (e.g., comments) are included in the same column as measurement 
data. All metadata should be removed and included in a separate column as a censor flag or 
comment. If no numeric measurement data are available, flag as ignore. 

2. Identify impossible (e.g., negative values) and highly improbable data entries (e.g., DIN and 
DRP concentrations > TN and TP concentrations after taking into account the associated 
uncertainty of measurement). Where possible, check field and laboratory data sheets to 
determine whether the values were measurement errors or transcription errors. Where 
possible, correct errors or flag as ignore (if impossible) or outlier (if beyond the expected 
range). Ideally, data corrections should be passed back to the data originators to allow the 
original data source to be corrected as appropriate. 

3. Use graphical methods to help interpret data anomalies. For example, a strongly bimodal 
distribution of values may indicate that two different measurement units have been used 
(e.g., nutrient concentrations in mg/m3 and mg/L, dissolved oxygen concentrations in percent 
saturation and mg/L). Time-series plots can be used to identify potential step-changes where 
measurement units and/or detection limits have changed, while quantile plots, histograms 
and box plots can help identify outliers. 

4. Use data summaries (e.g., pivot tables) to identify extreme values and potential detection 
limits. For example, check for repeated values (>5 % of values within a given variable) that 
may represent a detection limit and apply the appropriate censor flag if one has not already 
been assigned (e.g., < or >). 

Suggested steps for error checking and processing errors in metadata 

1. Flag observations with missing or inconsistent metadata as ignore if the metadata are critical 
to the analysis (e.g., date, spatial coordinates). 
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2. Flag observations with incompatible measurement or analytical methods as ignore. 

3. Check for data records that may have been duplicated (e.g., multiple records on the same 
date). This is particularly important if combining multiple datasets. Where the data are 
identical, flag duplicates as duplicate. Where multiple records for a given site and variable 
are present on the same date, it may be appropriate to calculate summary statistics (e.g., 
daily means). If this approach is used, then add a composite flag and make sure that the 
methodology is noted in the comments.  

4. Map sites using the supplied coordinates to ensure that site locations match the 
descriptions. Initial checks include identifying sites with missing coordinates or those outside 
the geographic bounds of the study region/area (e.g., due to zeros, flipped coordinates or 
incorrect coordinate systems). If coordinates need to be transformed to a different 
coordinate system, it is good practise to compare maps of sites using both systems to ensure 
that errors have not been introduced during the transformation process. Finally, site 
locations should be checked against site names where possible to ensure that they are 
mapped in the correctplace.  

A2.3 Commentary  
Data screening and error correction are needed to ensure that trend assessment results are accurate. 
However, some data errors are likely to remain undetected using the methods recommended here, 
because the measurement values appear reasonable. Conversely, some anomalous but valid values 
may be incorrectly classed as errors and removed. The aim is to maximise the former while 
minimising the latter. As noted above, a lenient approach increases the number of data errors 
retained, which can reduce accuracy, and a highly stringent approach can increase the number of 
site/variable combinations removed, which can reduce the spatial extent of the analysis. To our 
knowledge, there is no optimal balance. The non-parametric trend assessment methods in Section 6 
should ensure that a moderate number of uncorrected errors will have minor effects on the 
assessment results. Therefore, highly stringent approaches that result in high numbers of 
site/variable combinations removed) are not recommended. 

Automated error identification and correction systems have been developed for processing water 
quality data, particularly data generated by high-frequency, in situ sensors (Campbell et al. 2013; 
Horsburgh et al. 2015). In these cases, the quantity of data can make manual error identification and 
correction prohibitively time consuming. However, automated error correction applies to the limited 
range of errors (e.g., sensor drift, skipped measurements) that can be corrected using simple 
algorithms. Furthermore, automated procedures lack the intermediate ‘confirming and interpreting 
errors’ step set out above. This is an important step that cannot be automated as it involves 
subjective decisions and in some cases, communication between data analysts and data providers. 
Assuming that the data used for trend-analyses are primarily from monthly to annual monitoring, we 
recommend manual error interpretation and correction.  

A3 Ensuring comparable measurement methods 

A3.1 Purpose 
For most commonly measured water quality and ecological variables, two or more measurement 
methods have been used in New Zealand monitoring programmes (Larned et al. 2016). Alternative 
methods that produce divergent measurement values are a source of extraneous variation in 
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statistical analyses. One of the primary aims of the NEMS initiative is to recommend reliable and 
accurate methods, and compliance with the standard will increase consistency across monitoring 
programmes. In turn, greater consistency will reduce the effects of methodological variation in data 
analyses. Unfortunately, the beneficial effects of consistency in methods will be gradual for water 
quality trend assessments; the NEMS for Water Quality  was published in 2019 and the time-series 
used for trend assessments often extend back over a decade. For this reason, data analysts must 
address the issue of multiple methods in time-series. This issue can be manifested in several ways: 
the time-series for a given variable at a single site may be affected by a change in measurement 
methods part way through the record, the measurement methods for a given variable may differ 
among sites, or both.  

Data analysts must make subjective decisions when dealing with the issue of multiple methods. 
Retaining all data regardless of the measurement method raises the risk that variation due to 
variable methods will confound trend detection. Conversely, retaining the data generated from a 
single method and omitting the data generated from all alternative methods can result in large 
reductions in site/variable combinations. As a compromise, we recommend pooling data that 
correspond to ‘comparable’ measurement methods. Comparable methods produce equivalent values 
for a given sample. The NEMS standard provides commentary on comparable and non-comparable 
methods for some water quality variables (e.g., E. coli, TN). For other variables, comparability can be 
assessed using published reports of the comparative accuracy, precision and bias of two or more 
methods (e.g., Kilroy and Biggs 2002; Davies-Colley and McBride 2016).17 

A3.2 Method 
For each variable to be analysed, determine the largest group of data corresponding to comparable 
methods. Retain this group and delete the data corresponding to the non-comparable methods. In 
some cases, only one acceptable method is in use in New Zealand; this method is generally the most 
widely used. In these cases, retain the data corresponding to the acceptable method and delete the 
remaining data. 

A3.3 Commentary 
The problems posed by variation in methods are greatest for trend analyses that incorporate data 
from many sources, which can include a wide range of measurement methods (e.g., national data 
compilations from multiple agencies). If non-comparable methods for a given variable are used in 
each of two or more regions that each encompass numerous sampling sites, then all sites from one 
or more entire regions will be excluded from the analysis. For example, in previous national-scale 
analyses, the total nitrogen data were excluded from all sites in several regions that used methods 
deemed non-comparable (Larned et al. 2018a; Larned and Unwin 2012). 

 
17 In addition, Davies-Colley et al. (2019) document an approach for assessing the level of agreement between river water quality 
measurements from two organisations. 



 

Guidance for the analysis of temporal trends in environmental data  89 

Appendix B Comparison of flow adjusted and non-flow adjusted 
trends  
This appendix provides a comparison of flow adjusted versus non-flow adjusted trend assessments. 
We use “raw” and “flow adjusted” to distinguish analyses performed using the raw (i.e., non-flow 
adjusted data) and flow adjusted data. The purpose of this comparison is to allow the reader to 
gauge the impact that flow adjusting might have on the outcomes of trend assessments. To 
demonstrate these impacts, we used the 10-year trend assessments from Larned et al. (2018a) and 
extracted only site-variable combinations where Larned et al. (2018a) had chosen to flow adjust the 
observations (i.e., at sites where there was a plausible relationship between observations and flow 
and R2 ≥ 20%). This reduced the dataset to from 9,342 to 775 site-variable combinations (in total 8 
variables). We present the comparison in terms of the suggested reporting measures outlined in 
section 6.2: 

 Table of trend direction (Table B-1); 

 Table of categorical confidence the trend was decreasing (Table B-2); 

 Scatter plots of confidence that trend direction is decreasing, Cd, (Figure B-1); and  

 Scatter plots of Sen slopes (and uncertainties) (Figure B-2). 

For the continuous measures (Cd and Sen slopes), we also provide descriptive statistics (correlation 
coefficient, root mean square deviation and bias) to describe the relationship between the raw and 
flow adjusted estimates. For the Sen slopes, which are also provided with 90% confidence intervals, 
we have also evaluated the percentage of sites where the 90% confidence overlap, and where the 
flow adjusted Sen slope falls within the 90% confidence interval of the raw Sen slope. 

For this dataset we found that: 

 Trend direction was consistent between raw and flow adjusted trends for 84% of 
site/variable combinations. Just 1% of site/variable combinations that had raw 
confidence levels of “likely” or greater, switched direction to “unlikely” or stronger for 
the flow adjusted confidence category, while 2% of site/variable combinations that 
had raw confidence levels of “unlikely” or greater, switched direction to “unlikely” or 
stronger for the flow adjusted confidence category. 

 Categorical levels of confidence that the trend direction was decreasing were 
consistent between raw and flow adjusted trends for 52% of site/variable 
combinations. A further 32% of sites only moved up or down by one category. 

 There was high correlation between Cd for the raw and flow adjusted trends (0.84 for 
the entire dataset). The root mean squared deviation (RMSD) represents the mean 
difference between Cd estimated for the raw and flow adjusted trends (Piñeiro et al. 
2008). RMSD varied between variables from 0.13 to 0.25. There was a small, but 
mostly consistent negative bias (Cd for the flow adjusted trends was on average slightly 
smaller than for the raw trends) (Table B-3). 
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 99% of site/variable combinations had overlapping 90% confidence intervals for their 
raw and flow adjusted Sen slopes while 89% of site/variable combinations had flow 
adjusted Sen Slopes that lay within the 90% confidence interval of their raw Sen 
slopes. This suggests that the differences in Sen slopes are generally small relative to 
the uncertainty on the Sen slope estimates. 

The overall conclusion from this analysis is that flow adjustment can result in appreciable differences 
in trend assessment results compared to analyses performed on the raw data for individual sites. 
However, based on this analysis, conclusions drawn from aggregated results of trend analyses 
performed for many sites are not very sensitive to flow adjustment. 

Table B-1: Comparison of trend directions estimated with and without flow adjustment.  

 Raw  

Decreasing Increasing Indeterminate 

Flow adjusted 

Decreasing 377 32 1 

Increasing 78 277 4 

Indeterminate 3 3 0 

 

Table B-2: Comparison of categorical confidence levels that the trend was decreasing (from Table 6-2) 
estimated with and without flow adjustment.  
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Flow adjusted 

Highly unlikely 55 15 24 15 1 0 0 

Very unlikely 6 6 24 7 1 0 0 

Unlikely 4 11 41 47 15 2 0 

As likely as not 0 1 15 91 45 5 5 

Likely 0 1 3 28 79 14 19 

Very likely 0 0 0 1 16 14 14 

Highly likely 0 0 3 2 12 13 120 
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Figure B-1: Scatter plots comparing the confidence that the trend direction was decreasing for raw and 
flow adjusted trends, by variable.  

Table B-3: Comparison of confidence that the trend direction was decreasing (Cd), by variable for raw and 
flow adjusted trends.  

Variable Correlation coefficient RMSD Bias 

CLAR 0.77 0.25 0.06 

DRP 0.93 0.15 -0.03 

ECOLI 0.86 0.23 -0.12 

NH4N 0.93 0.13 -0.01 

NO3N 0.86 0.19 -0.05 

TN 0.85 0.21 -0.08 

TP 0.77 0.23 -0.04 

TURB 0.82 0.22 -0.08 
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Figure B-2: Scatter plot comparing trend rate (i.e., Sen slopes) for raw and flow adjusted trends, by 
variable.  Grey lines indicate the 90% confidence intervals Note that X and Y scales are non-linear (square root 
adjusted). 

Table 3: Comparison of Sen slopes for raw and flow adjusted trends. CI Overlap: the proportion of pairs of raw 
trends and flow adjusted trends for the same site for which the 90% CI overlaps. FA SSE in raw CI: the 
proportion of sites for which the flow adjusted Sen slope falls within the 90% CI of the raw Sen slope. 

Variable Correlation coefficient RMSD Bias CI Overlap FA SSE in raw CI 

CLAR 0.75 6.2E-02 -0.013 100% 91% 

DRP 0.98 1.9E-04 0.000028 98% 94% 

ECOLI 0.95 8.7E+00 3.9 100% 80% 

NH4N 0.69 4.8E-04 0.00016 100% 86% 

NO3N 0.85 7.9E-03 0.0018 100% 88% 

TN 0.87 1.1E-02 0.0033 99% 92% 

TP 0.95 7.0E-04 0.00016 100% 85% 

TURB 0.46 3.6E-01 0.069 97% 88% 
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Appendix C Comparison of seasonal and non-seasonal trend 
assessments 
In this appendix we present a comparison of the effects of using a seasonal versus a non-seasonal 
trend assessment. We used 10 years of monthly data for 74 National River Quality Network 
(NRWQN) sites from the study Larned et al. (2018a). The purpose is to demonstrate the implication 
of the subjective choice of a Kruskall-Wallis test p-value of 0.05 as the threshold for assessing 
seasonality. 

For all 74 sites and eight variables, we evaluated the Kruskall-Wallis test p-value to quantity the 
degree of seasonality (with seasons defined as months) for each site/variable combination. We then 
performed both a seasonal and a non-seasonal trend assessment for each site/variable combination. 
The confidence that the trend was decreasing (Cd) and the trend rate (i.e., Sen slope, and its 
uncertainty) for the seasonal and non-seasonal trend assessments are compared. 

In general, Figure C-1 and Figure C-2 indicate that seasonal and non-seasonal trend assessments yield 
similar results. Qualitatively, it appears that the larger differences in the confidence that the trend 
was decreasing (either positive or negative differences) tend to be more associated with site/variable 
combinations where the Kruskall-Wallis p-value was <0.05 (i.e., they would be identified as 
“seasonal”). All non-seasonal Sen slope confidence intervals contained the seasonal Sen slope 
estimate. Therefore, the differences between the estimated Sen slopes were smaller than the 
uncertainties of these estimates. 
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Figure C-1: Comparison of seasonal and non-seasonal estimates of the confidence that the trends were 
decreasing (Cd).  
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Figure C-2: Comparison of seasonal and non-seasonal estimates of the Sen slope.   Grey error bars indicate 
the 90% confidence intervals for the Sen slope estimates. 
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Appendix D Climate influence on water quality trends 
A recent study has built on the earlier work by Scarsbrook et al. (2003) and quantified the influence 
of the El Niño Southern Oscillation climate pattern (ENSO) on freshwater water quality trends in New 
Zealand (Snelder et al., submitted). The study assessed the relationship between the Southern 
Oscillation Index (SOI), which is an indicator of the ENSO climate pattern, and temporal variability in 
monthly observations of eight water quality variables, water temperature and flow at 77 National 
River Water Quality Network (NRWQN) monitoring sites over a 27-year period (1999–2016). 

The study comprised three steps. Step one investigated the correlation between the monthly 
observations of each of the variables at each site and the corresponding monthly values of the SOI. 
The correlation coefficients for each site and variable combination are referred to as SOIc and 
ranged between -0.63 and 0.69 with an even split across sites and variables into positive and 
negative values. This finding is evidence that temporal variation in ENSO strength drives temporal 
variation the observed variables in New Zealand. 

The strength and direction of the correlation between the observed variables and the SOI (i.e., SOIc) 
were highly variable in space. However, geographic patterns in SOIc for flow (FLOW), turbidity 
(TURB), electrical conductivity (COND), colour dissolved organic matter (CDOM) and total phosphorus 
(TP) were consistent with the known effects of ENSO on rainfall and were not explained by 
categorisation of the NRWQN sites into impacted and baseline (i.e., relatively natural) catchment 
conditions. The combination of these findings suggests that the responses of these variables to the 
SOI are linked to the influence of rainfall on their mobilisation and transport rather than variation in 
land management practices in response to climatic conditions. In contrast, there were no detectable 
geographic patterns in SOIc for dissolved reactive phosphorus (DRP), ammoniacal nitrogen (NH4N), 
nitrate and nitrite nitrogen (NNN) and total nitrogen (TN). In addition, between-site differences in 
SOIc in these variables were not explained by the impacted and baseline categories. These findings 
indicate that the response of water quality variables to the same climate stimulus is variable across 
sites even when these sites are in close proximity. This may be because the responses of DRP, NH4N, 
NNN and TN are more strongly mediated by catchment processes such as mobilisation and 
biogeochemical transformation within soils and groundwater than the other water quality variables. 

Step two of the study investigated variation in the trends assessed for each site and variable for 
different ‘time windows’ (i.e., analysis time periods). Rolling windows were defined of 5, 10 and 15-
years duration starting in 1990 and incrementing by one year to a final period ending in 2016. This 
resulted in 23, 18 and 13 time windows of 5, 10 and 15-years duration, respectively. For each site, 
variable and window, the trend was quantified by Kendall’s Tau (τ), which is a standardised version 
of the Kendall S statistic. Values of τ range between -1 and +1; a positive value indicating that the 
observations increased through time and vice versa. For each variable, time window and duration, 
the site trend is referred to as 𝜏௪ . 

For each variable, values of 𝜏௪ tended to oscillate between time windows for all three durations 
(Figure D-1). Within a variable, the magnitude of changes in the 𝜏௪ between adjacent time windows 
decreased with increasing time window duration (Figure D-1). For example, for the 5 and 10-year 
time window durations, there were frequent changes in the direction of the majority of site trend 
between time windows that were separated by only one or two years (e.g., from >50% of sites with 
increasing trends to >50% of sites with decreasing trends). In contrast, changes in direction of the 
majority of site trends within one or two years were less frequent for the 15-year time window 
duration. 
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The findings of step two of the study indicate that results of trend analyses are sensitive to the time 
window of the analysis and that large changes in trend strength and direction occur between time 
windows. The oscillation in the direction and strength of trends suggests that cyclic climatic 
processes are involved.  

 

Figure D-1: Distribution of site trends (𝝉𝒘statistic) with time window and time window duration.  Each 
panel represents a time window duration (columns) and a water quality variable (rows). Within each panel, the 
boxes and whiskers represent the distributions of the site trend strength and direction (i.e., the 𝜏௪ statistics for 
the 77 sites) for the time windows ending at the associated end year (horizontal axis). The plot indicates the 
interquartile range, the central horizontal line in the box represents the median, and the lower and upper ends 
of the whiskers indicate the 5th and 95th percentile values, respectively. The horizontal red line indicates a 𝜏௪ 
statistic of zero; median values above and below this line indicate the majority of sites (i.e., > 50%) had 
increasing and decreasing trends, respectively. 
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Because the ENSO process is quasi-cyclic with irregular phases occurring on average every two to 
seven years, there are monotonic trends in the SOI for each time window which we refer to here as 
‘SOI trends’ and denoted 𝛿𝑆𝑂𝐼௪ (Figure D-2). In step three of the study, regression models were used 
to relate the strength and direction of site trends (𝜏௪) to the SOI trend.  

 

Figure D-2: SOI trends, defined by linear trends in the SOI, for time windows representing time window of 
three durations of 5, 10 and 15-years. Each point represents 𝛿𝑆𝑂𝐼௪  for the time window indicated by the end 
year (x-axis). Note that the scale of the vertical axis is transformed to emphasise values close to zero. 

For all variables, variation in site trends between windows were significantly explained by the 
combination of the SOI trend (𝛿𝑆𝑂𝐼௪) and the correlation between the monthly water quality 
observations and SOI (𝑆𝑂𝐼𝑐). When averaged across all variables, the models explained an average of 
11%, 24% and 9% of the variation in site trend strength and direction for trend durations of 5, 10 and 
15-years, respectively. The variation in site trends explained by the models were related to the 
absolute value of 𝑆𝑂𝐼𝑐. Model R2 values tended to increase with increasing absolute values of 𝑆𝑂𝐼𝑐. 
In addition, the trend direction in any time window was related to the direction of the SOI trend. 
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When 𝛿𝑆𝑂𝐼௪ and 𝑆𝑂𝐼𝑐 were positive, the water quality trend tended to be positive and vice versa 
and the opposite applied for sites with negative 𝑆𝑂𝐼𝑐 values.  

The findings of step three of the study indicate that the climate signal translates into a predictable 
variation in water quality trends. During periods when the SOI trend is positive, there is a tendency 
for increasing water quality trends at sites with positive 𝑆𝑂𝐼𝑐 values. The opposite applies to sites 
with negative 𝑆𝑂𝐼𝑐 values. This pattern is reversed during periods when the SOI trend is negative. 
Oscillations in aggregate trends (Error! Reference source not found.) arise because the ENSO process 
drives variation in rainfall and temperature over large spatial scales. In turn the variation in rainfall 
and temperature drives synchronous water quality responses (i.e., changes at the same time across 
sites). However, the direction and strength of water quality responses varies depending on the 
specific response to the SOI at each site (i.e., 𝑆𝑂𝐼𝑐 values). 

The SOI is a broad indicator of climate variation that accounts for less than 25% of the year to year 
variance in seasonal rainfall and temperature at most New Zealand measurement sites (Salinger and 
Mullan 1999). The SOI is therefore an imprecise representation of the proximate climatic drivers of 
trends (i.e., rainfall and temperature) at any site and this means it is likely that the study under-
estimates the contribution of climate to water quality trends for at least some sites and variables. 
The characteristics of climate that best explain water quality responses are likely to vary between 
sites and variables due to the differing and complex mechanisms that mediate those responses. 

A conclusion of this study is that effects of climate variation may amplify or counteract the effects of 
other drivers of water quality trends, even when those trends are assessed over time windows that 
are longer than climate cycles. In turn, this means that a risk of reporting water quality trends 
without robust attempts to identify the causes is that it may lead to speculative attribution of the 
trends to anthropogenic drivers. This may then lead to management actions to mitigate 
anthropogenic drivers that are ineffective in reversing degrading trends. 


