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EXECUTIVE SUMMARY 

Ficopomatus enigmaticus Fauvel, 1923 is a marine polychaete in the family Serpulidae. The 

species is characterised by its formation of extensive biogenic reefs in hard- and soft-

substrate habitats. Non-indigenous and highly isolated populations of F. enigmaticus have 

been observed in New Zealand since the 1960s. Hawke’s Bay Regional Council (HBRC) is 

concerned about the development and progressive expansion of substantial F. enigmaticus 

reefs around local waterbodies, as they pose risks to the integrity of native ecosystems and 

critical flood prevention infrastructure. 

 

Hawke’s Bay Regional Council engaged the Cawthron Institute (Cawthron) to provide advice 

on the feasibility of potential management interventions. One of the objectives of this project, 

addressed in this report, is the development of a review that captures current knowledge of 

the distribution, ecology and reproductive seasonality of F. enigmaticus, the scale and 

impacts of its invasion or population explosion events worldwide, and the outcomes of 

attempts undertaken to eradicate or manage F. enigmaticus populations. 

 

We conducted a review of the published international literature and engaged in direct 

communication with seven recognised experts on F. enigmaticus invasions in different global 

regions. In this report, we describe the discovery, extent, densities, growth rates, 

reproduction and recruitment characteristics, impacts, and attempts at management of 

invasive or nuisance F. enigmaticus populations in Europe, Africa, North and South America 

and Australia. Our review indicates that introduced F. enigmaticus populations can grow at 

very high rates – up to 9 ha per year – with worm reefs attaining a biomass of up to 

550 kg/m3 (observed in Italy). Multiple spawning events may occur in a single year; however, 

reproductive seasonality, growth rates, reef morphology and size appear to vary 

geographically; moreover, the studies are too limited to allow generalised conclusions. 

 

Disappointingly, only a small number of studies have examined the impact of invasions or 

population expansions of F. enigmaticus, and communication with global experts suggests 

that very few attempts have been made to eradicate or remove F. enigmaticus from natural 

or artificial environments. Global case studies can therefore contribute only limited 

information towards considerations for F. enigmaticus control in New Zealand. However, our 

review presents some important conclusions. First, it appears that the extent of 

F. enigmaticus infestations in the Hawke’s Bay region in New Zealand is relatively small 

compared to invasive populations in other parts of the world. This is important for the 

consideration of potential population control measures, as it may provide a (temporary) 

advantage for interventions. This view was shared by several of the international experts we 

consulted. Second, control attempts for global F. enigmaticus populations seem to have 

been sporadic; furthermore, they have been conducted at a relatively small scale over a 

short period of time rather than in a sustained manner following a medium- to long-term 

strategy. We consider that the lack of success reported from overseas is not a reason to 

assume that population control in the Hawke’s Bay region is not possible. In addition, there 

are several helpful findings reported in the information gathered for this review. For example, 
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control measures (i) should not be undertaken when worms may release gametes or larvae, 

and (ii) there is a need to ensure that no reef material / fragments are generated or, if 

unavoidable, left behind, as these can act as nuclei for the formation of new reefs. There are 

also indications (although not based on rigorous data) that variations in eutrophication and 

salinity levels may influence population dynamics of this species. The incorporation of these 

(and other) conclusions into HBRC’s approach will likely strengthen the chances of 

successful reef management. 

 

Despite the apparent lack of success of previous management efforts, F. enigmaticus 

population control attempts in the Hawke’s Bay region should not be ruled out. Instead, we 

recommend that HBRC continue to evaluate the feasibility of population control or attempted 

local eradication. The next step is the preparation of a feasibility assessment that examines 

potential management approaches against a range of criteria to provide recommendations 

on appropriate methods for controlling the invasive worm reefs in the Ahuriri estuary and the 

Clive River. 
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1. BACKGROUND AND OBJECTIVES 

Ficopomatus enigmaticus Fauvel, 1923 is a sessile serpulid worm that is non-

indigenous to New Zealand. It was first discovered in Whangārei Harbour, New 

Zealand in 1967 (Read & Gordon 1991) and is now established in Tāmaki estuary 

(Gulf Harbour), Whangārei Harbour, Ahuriri estuary and Clive River near Napier 

(Probert 1993; Cranfield et al. 1998; Hayward & Morley 2005; Inglis et al. 2006a, 

2006b; Kelly 2008; pers. comm. A. Madarasz-Smith). Ficopomatus enigmatus is 

regarded as a pest species in several global regions and is infamous for its high rates 

of recruitment and fast-growing biogenic reefs (Cranfield et al. 1998; Bianchi & Morri 

2001; Schwindt et al. 2004b; Dittmann et al. 2009). In Europe, F. enigmaticus is 

regarded as one of the 100 ‘worst’ marine non-indigenous species in terms of 

ecological and economic impacts (Streftaris & Zenetos 2006; CABI 2013). It is 

invasive in locations in Europe, Africa, North and South America, New Zealand and 

Japan (reviewed in Dittmann et al. 2009). Ficopomatus enigmatus also occurs 

extensively in some Australian coastal locations; however, there is some debate 

regarding its status as a native versus non-indigenous species (Dittmann et al. 2009). 

 

In recent years, Hawke’s Bay Regional Council (HBRC) have observed a steep 

increase in regional populations of F. enigmaticus. In particular, the development of 

substantial worm ‘reefs’ around some local waterbodies has raised concerns about 

the integrity of native ecosystems and civic infrastructure required for flood protection. 

HBRC has therefore engaged the Cawthron Institute (Cawthron) to provide advice on 

the feasibility of potential management interventions. 

 

The objectives of this project were to: 

1. develop a manual to guide HBRC in conducting recruitment monitoring 

of F. enigmaticus to ascertain its current distribution and reproductive 

seasonality. 

2. undertake a review of global case study literature and communication 

with relevant international experts to capture current knowledge of F. 

enigmaticus ecology, regional seasonality, reproduction and 

recruitment, as well as the scale, timeframes and impacts of invasion 

or population explosion events, and the methods and outcomes of 

previous control attempts. 

 

This report addresses item (ii) above and follows the delivery of item (i) in August 

2022 (Wolf 2022). 
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2. OVERVIEW OF FICOPOMATUS ENIGMATICUS 

2.1. Taxonomy and distribution 

Ficopomatus enigmaticus is a species in the polychaete worm family Serpulidae 

Rafinesque, 1815. All species in this family are sessile and live in a mineral tube 

(Watabe 1990; Riedi 2012). Ficopomatus enigmaticus belongs to the sub-family 

Serpulinae Rafinesque, 1815, which can be differentiated from other sub-families of 

the serpulids by their reproductive biology (Kupriyanova et al. 2001, 2006; 

Kupriyanova 2003). Serpulins inhabit fresh, brackish and marine waters (Kupriyanova 

et al. 2009).  

 

Ficopomatus enigmaticus was first observed in 1921 in the Caen Channel on the 

north-west coast of France, and it was initially described as the non-indigenous 

species Mercierella enigmatica by Fauvel, 1923 (Dixon 1977; Charles et al. 2018). 

Since its first description, the species has been recorded in nearly every continent in 

brackish temperate habitats (see Figure 1). Ficopomatus enigmaticus is an invasive 

species in areas in Europe, Africa, North and South America, New Zealand, Japan 

and, likely, Australia (Dittmann et al. 2009). Following the identification of 

morphological similarities, early Australian research suggested that the serpulin 

Neopomatus uschakovi Pillai, 1960 (occurring in northern Australia) was synonymous 

with M. enigmatica from south Australia (Straughan 1966). This led to the attribution of 

N. uschakovi's ecological and reproductive characteristics to the northern M. 

enigmatica (Straughan 1972a, 1972b). However, within the same decade, a 

systematic review of brackish water polychaetes separated the two species and 

placed them into the genus Ficopomatus Southern, 1921 as F. enigmaticus and F. 

ushakovi (ten Hove & Weerdenburg 1978; Dittmann et al. 2009). Despite this 

separation, aspects of the reproductive biology of the two species of Ficopomatus are 

still confused, a ‘hangover’ of Straughan’s earlier synonymisation (Dittmann et al. 

2009; Benger et al. 2010). 

 

The genus Ficopomatus includes four additional brackish water species: F. macrodon 

Southern, 1921; F. talehsapensis Pillai, 2008; F. shenzhensis Li, Wang & Deng, 2012; 

and F. miamiensis Treadwell, 1934. Ficopomatus ushakovi and F. miamiensis are 

also invasive non-indigenous species in some tropical brackish water habitats, with 

potentially comparable impacts on local environments (Tovar-Hernández et al. 2009; 

Liñero-Arana & Díaz-Díaz 2012; Tovar-Hernández & Yáñez-Rivera 2012; Arteaga-

Flórez et al. 2014). 

 

The type locality for F. enigmaticus is in France (the location of its first description), 

but the geographic origin of the species is unclear (Styan et al. 2017). Publications 

from the late 19th century suggested that F. enigmaticus may have originated from 

Australia (Dixon 1981; Bianchi & Morri 1996; Luppi & Bas 2002). More recent theories 

suggest that the genus Ficopomatus originated from the Indian subcontinent or 
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adjacent Indo-Pacific coastline, where F. enigmaticus and con-generic species are 

thought to be native or cryptogenic (of uncertain origin) (Fauvel 1932; Pollard & 

Hutchings 1990; Hewitt et al. 2004; Dittmann et al. 2009; Tovar-Hernández et al. 

2009; Tovar-Hernández & Yáñez-Rivera 2012; Bastida-Zavala et al. 2017; Styan et al. 

2017). 
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Figure 1. Global distribution of Ficopomatus enigmaticus as identified in this review. Red dots indicate records of population based on communications and 

literature.
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2.2. Ecology 

Ficopomatus enigmaticus populations occur in soft- and hard-substrate habitats 

associated with estuaries, lagoons and coastal embayments. Adult populations are 

generally found at salinities ranging from ~10 to ~30 psu (Dittmann et al. 2009). All 

Serpulinae are non-selective suspension feeders that remove food particles of a 

certain size range from the water column (Fauchald & Jumars 1979; Jumars et al. 

2015). Adult individuals of F. enigmaticus (of ~5 g dry weight) remove ~0.2 g of 

organic material from the water per hour, primarily within a size range of 2–16 µm but 

including smaller and larger particles (Davies et al. 1989). This results in an estimated 

hourly clearance rate of 8 L/g of worm dry weight (Davies et al. 1989; Jumars et al. 

2015). 

 

Ficopomatus enigmaticus is considered an ecosystem engineer, whose reefs can 

provide a structurally complex habitat (Figure 2) in an otherwise muddy or sandy 

environment (Jones et al. 1994, 1997; Schwindt et al. 2001; Vanaverbeke et al. 2009). 

The dry mass of F. enigmaticus (worms only) can reach up to 10 kg/m3, whereas the 

hard structure of the reef (made of worm tubes) can average 500 kg/m3 of which 80% 

is calcium carbonate (Bianchi & Morri 1996). A single cubic metre of F. enigmaticus 

reef can filter up to 80 L of water and remove up to 400 g of plankton per hour (Davies 

et al. 1989; Bianchi & Morri 1996; Jumars et al. 2015). Each year, each cubic metre of 

reef (at the Po River estuary, Italy) removes ~13 kg of calcium carbonate from the 

water column and secretes this as tube material for reef expansion (Bianchi & Morri 

1996). The total reef mass in the Po River estuary increased by ~9 ha (from 15 to 200 

ha) per year between 1979 and 2000 (Bianchi & Morri 1996, 2001). Studies in 

Argentina, Italy and Spain indicated that the shape of reefs, as well as the direction of 

their growth, is influenced by environmental factors such as salinity and currents 

(Fornós et al. 1997; Bianchi & Morri 2001; Schwindt et al. 2004a). For example, in 

areas with multidirectional currents, the reefs seem to be circular and flat and grow in 

all directions. In contrast, in areas of unidirectional water flow, reefs are bulkier and 

seem to attain a more linear shape (Fornós et al. 1997; Schwindt et al. 2004a). 

Variation in reef density across a lagoon is also likely to be related to salinity and 

other environmental factors (Schwindt et al. 2004b). As reefs increase in size and 

abundance, they can affect local hydrodynamics and water turbidity, and separate 

smaller reefs can amalgamate into bigger reefs (Schwindt et al. 2004b; Benger et al. 

2010). Ficopomatus enigmaticus’ high filtration rate is also likely to make it an efficient 

resource competitor for native suspension feeders (Bruschetti et al. 2008, 2015; 

Konrad 2014; Sánchez et al. 2016; Galimany et al. 2017; Zwerschke et al. 2018; 

Montefalcone et al. 2022). 
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Figure 2 Ficopomatus enigmaticus reefs at the Mar Chiquita lagoon, Buenos Aires, Argentina at 
low tide. Source: Bruschetti (2019), figure 2, p. 5. Photo credit: MI Jaubet. 

 

 

Individual worms of F. enigmaticus (Figure 3) usually attain lengths of 2–4.4 cm 

(ten Hove and Weerdenburg 1978; Shumka et al. 2014). However, worms found in a 

wetland on the Azores were up to 8 cm in length (Costa et al. 2019). Studies of other 

serpulins indicate that the tube grows up to four times the length of the adult worm 

(pers. obs. Wolf). Tube growth is dependent on various factors, including population 

density and competition. At high densities, many sessile invertebrates grow longer 

shells or tubes to maximise access to resources, leading to the formation of 

‘hummocks’ in which individuals at the centre of the aggregation have longer tubes 

(Straughan 1968; Menge 1976; Bertness et al. 1998; Schwindt et al. 2001). 

Ficopomatus enigmaticus populations may also be affected by ambient pollution 

levels. Research from Australia showed that the presence of copper (a common 

heavy metal pollutant in urbanised coastal environments) can suppress sensitive 

species, which provides a competitive advantage to more tolerant species, including 

F. enigmaticus (Johnston & Keough 2003). 
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Figure 3 Ficopomatus enigmaticus individual removed from its tube; seen from dorsal (left) and ventral 

(right); found in a stromatolite pool on the south coast of South Africa.  Source: Miranda et al. 
(2016), figure 2b & 2c, p. 260. Photo credit: NAF Miranda. 

 

 

The holistic communal impacts of F. enigmaticus are yet to be fully examined (Brundu 

& Magni 2021). Some studies have reported that reefs of F. enigmaticus can affect 

the composition of native biota; other research has documented that F. enigmaticus 

reefs support other non-indigenous species (Schwindt et al. 2001; Heiman et al. 2008; 

Bazterrica et al. 2011; Despalatović et al. 2013). Several studies concluded that local 

sedimentation rates double as a result of the development of F. enigmaticus reefs 

(Fornós et al. 1997; Katsanevakis et al. 2014; Shumka et al. 2014), which may affect 

nutrient availability and oxygen levels near and within the benthos (Burfeind et al. 

2013). Non-indigenous species can also enhance the transmission of parasites and 

viruses by either functioning as a vector or facilitating accumulation of vector species 

(Dinamani 1986; Huchette et al. 2006; Callaway et al. 2012; Etchegoin et al. 2012; 

Brenner et al. 2014; Pernet et al. 2016; Hernroth & Baden 2018; Costello et al. 2021). 

 

 

2.3. Reproductive biology 

To date, the reproductive biology of only a small number of the Serpulinae (a 

subfamily of the Serpulidae) has been described (Giangrande 1997). Of the species 

examined, the majority are broadcast spawners (Kupriyanova et al. 2001). Broadcast 

spawners release their gametes into the water (Figure 4), where sperm cells fertilise 

the egg cells. The release of gametes is synchronised, and although it is thought to be 

regulated via external factors such as temperature, moon phase and water 
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movement, the relative importance of these factors is not understood (Kupriyanova et 

al. 2001; Counihan et al. 2001; Onitsuka et al. 2007). 

 

It has been suggested that individuals of F. enigmaticus are protandric 

hermaphrodites (a form of sequential hermaphroditism). Protandric hermaphroditism – 

where an individual is initially male but becomes female during its lifetime – is thought 

to be common in serpulins (Ghiselin 1969, 1974; Hoagland 1984; Kupriyanova et al. 

2001; Cotter et al. 2003). However, some authors have suggested that F. enigmaticus 

may instead display alternating sexuality (a secondary form of sequential 

hermaphroditism), similar to some species of bivalve (Ghiselin 1974; Strathmann 

1978; Runham 1992; Giangrande et al. 1994; Rouse & Fitzhugh 1994; Bhaud et al. 

1995; Premoli & Sella 1995; Ghazala & Muzammil 2002; Wolf 2020). In this form of 

hermaphroditism, individuals can change their sex in response to population structure 

or energy levels (Coe 1932a; Heller 1993; Sella and Ramella, 1999; Juchault 2002; 

Prevedelli et al. 2006). Thus, this form of hermaphroditism could enhance overall 

reproductive output and allow for elevated dispersal and recruitment through the 

occurrence of multiple spawning events per season (Wolf 2020). 

 

 

 
 

Figure 4 Galeolaria geminoa Halt, Kupriyanova, Cooper & Rouse, 2009; removed from its tube 
and releasing oocytes.  Source: Olito et al. (2017), p. 17. Photo credit: L McLeod 
(Marshall lab, Monash University). 
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2.3.1. Reproduction 

The timing and environmental conditions associated with the reproduction of F. 

enigmaticus are not fully understood. The reproduction of this species in the UK is 

reported to occur once the water temperature exceeds 10 ºC (Thorp 1994); however, 

F. enigmaticus in Italy appear to reproduce only between 18 ºC and 24 ºC (Bianchi & 

Morri 1996). Notably, the reproductive season cannot be accurately deduced from 

observing recruitment (Manahan 1983, 1990; Havenhand & Svane 1991; Boidron-

Métairon 1995; Havenhand 1995; Grubert & Ritar 2004a). For example, reproduction 

and gamete release in marine polychaetes can occur at temperatures in which larvae 

are less likely to survive (Costlow & Bookhout 1971; Hoegh-Guldberg & Pearse 1995; 

Peria & Pernet 2019).1 Along the coastline of California, USA, F. enigmaticus appears 

to reproduce throughout the year, as recruitment is being observed at the full 

seasonal range of water temperatures between 13 ⁰C and 22 ⁰C (pers. comm. B. 

Pernet). Ficopomatus enigmaticus populations in the Po River estuary, Italy have two 

spawning periods, resulting in recruitment from May to July (water temperature 

increases between spring and early summer) and again during September (water 

temperature decreases in autumn) (Bianchi & Morri 1996). The existence of two 

spawning periods has also been reported in Argentina, but this observation was 

based on a very different approach – the examination of gametogenesis. The first 

developing oocytes within adult worms were observed during August and September 

(late winter to early spring), resulting in spawning around November (late spring). 

Oocyte development was again observed in January, with worms reaching sexual 

maturity around April (autumn) (Obenat & Pezzani 1994; Obenat et al. 2006). The 

possibility of multiple spawning periods has been also reported for other serpulin 

species (Zuraw & Leone 1968; O’Donnell 1986). The combination of alternating 

sexuality and multiple spawning periods could provide potential benefits to worm 

population growth: individuals that released oocytes during the first event could spawn 

the energetically cheaper spermatocytes during the second event, and vice versa 

(Coe 1932a, 1932b, 1934; Hoagland 1984; Runham 1992; Premoli & Sella 1995). 

 

Research from the UK suggested that female individuals (younger than 1 year) 

produce 1.5 x 103 oocytes per reproductive season (Gabilondo et al. 2013). An earlier 

study (reviewed in Kupriyanova et al. 2001) estimated the fecundity of a female F. 

enigmaticus to be between 1 x 103 and 1 x 104 oocytes, but the age of these 

individuals was not clear. Females of a similar sized worm endemic to New Zealand – 

Spirobranchus cariniferus Gray, 1843 – can produce up to 2.3 x 105 oocytes, which 

are up to one-third larger in size than the oocytes of F. enigmaticus (Kupriyanova et 

 
1 To avoid confounding reproduction with recruitment, the use of the reproductive biological zero point (rBZP – the 

temperature above which an organism invests energy into the production of gametes) is a suitable alternative. 
Once the rBZP is known, the estimated accumulative temperature (EAT) can be calculated as the sum of the 
average daily degrees above the rBZP until an individual is mature. If rBZP and EAT are known, the expected 
time to maturation can be estimated provided that sufficient food is available (Shoukry & Hafez 1979; Bulter et 
al. 1989; Ritar & Elliott 2004; Grubert & Ritar 2004b, 2005; Grubert 2005; Viana 2005; Leighton 2008; 
McCormick et al. 2016; Wolf & Ruawai 2020). 



FEBRUARY 2022  REPORT NO. 3875  |  CAWTHRON INSTITUTE 
 
 

 
 

10 

al. 2001; Obenat et al. 2006; Wolf 2020). Older individuals of F. enigmaticus may 

therefore produce substantially more oocytes than what has previously been reported. 

 

2.3.2. Development 

The larval development of F. enigmaticus is not fully understood, and the information 

presented is based on the generic larval development of the sub-family Serpulinae. 

One to two days following fertilisation of the female gametes, the trochophore larvae 

‘hatch’ (Figure 5a) and swim near the water surface, exhibiting positive phototaxis 

(Dixon 1981; Fernald et al. 1987; Marsden 1988; Gabilondo et al. 2013). Within four 

days, these larvae grow into a metatrochophora (Figure 5b), which enables the shift 

from a pelagic to a benthic life (Fernald et al. 1987; Gabilondo et al. 2013). The 

benthic larvae explore the substrate for suitable settlement sites and the individuals 

then attach to the susbtrate. Generally, this occurs 5–10 days after hatching (see 

following section). During attachment, larvae form their primary and (later) secondary 

tubes and then metamorphose from larvae to juveniles of F. enigmaticus (Figure 5c). 

 

Based on observations from Nigeria, recruits of F. enigmaticus can reach maturity 

within four weeks (Hill 1967), which is consistent with observations of other serpulins 

(Qui & Quian 1998; Kupriyanova 2001). However, given the tropical climate of Nigeria, 

there are doubts whether the Ficopomatus species examined by Hill (1967) were 

indeed F. enigmaticus or whether they belonged to the F. cf. ushakovi species 

complex that is known from global areas with warmer sea temperatures (Dittman 

2009; pers comm. E. Kupriyanova). Similar to larval development, maturation is 

dependant on external factors such as temperature, salinity and food (Gee 1967; 

Leone 1970; Qiu & Qian 1998; Kupriyanova et al. 2001). 

 

2.3.3. Larval dispersal 

Pelagic larvae of marine invertebrates often have cilia (Figure 5a & b) that enable the 

larvae to undertake restricted movements within the water column to avoid predation, 

reach food sources, achieve dispersal and find settlement substrates (Mileikovsky 

1973; Boicourt 1982; Shanks 1983; Hannan 1984; Banse 1986; Cronin & Forward 

1986; Marsden 1994). Orientation can be achieved using phototactic and geotactic 

senses (Bayne 1964; Marsden 1988). The planktotrophic larvae of serpulins are 

thought to be able to extend their pelagic period and potential distance via movements 

within the water column (reviewed by Kupriyanova et al. 2001; Toonen & Pawlik 2001; 

Wolf 2020). The larvae of F. enigmaticus can potentially remain pelagic for up to three 

months (Dixon 1981). 

 

2.3.4. Settlement, recruitment and maturation 

Recruitment of F. enigmaticus generally occurs between zero and four metres depth 

(Thorp 1994; Fornós et al. 1997; Weitzel 2021). The lower vertical recruitment limit is 

often defined by the presence of suitable settlement substrates, competitors, 
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predators and overall depth (Stephenson & Stephenson 1949; Paine 1974; Weitzel 

2021), whereas the upper limit is usually determined by abiotic factors such as UV 

radiation, air exposure or tidal movement (Connell 1961; Moyse & Knight-Jones 1965; 

Bayne et al. 1988; Raimondi 1988a, 1988b; Bertness et al. 1999; Shafer et al. 2007). 

Most serpulins recruit to substrates covered in biofilms. Since biofilms are affected by 

UV radiation (Hung et al. 2005), recruitment to higher tidal levels generally occurs in 

shaded places (O’Donnell 1986; Wolf 2020). Both F. enigmaticus and F. ushakovi 

have been observed to settle up to 1 metre above the vertical limit of established adult 

populations (Thorp 1994), particularly after rainfall (Straughan 1972a). According to 

observations from California, USA and South Africa, recruitment appears limited in dry 

years relative to wetter years (pers. comm. B. Pernet & T. Robinson-Smythe). 

 

Most serpulins – including F. enigmaticus – live in aggregations, but it is not 

understood how these aggregations are formed. Propagules of F. enigmaticus appear 

less substrate specific compared to recruits of other serpulins (Chapman et al. 2007; 

Wolf 2020). A wide range of materials, including glass bottles, concrete, mollusc and 

turtle shells, can act as nuclei for new aggregations that grow into larger reefs (Fornós 

et al. 1997; Schwindt & Iribarne 2000; Benger et al. 2010). Studies of other serpulin 

species have reported that algal blades can act as nuclei for new reefs (Riedi 2012). 

Where F. enigmaticus settle on living shells, the subsequent development of reefs can 

cause the death of the base organism (Wahl 1996; Donovan et al. 2003; Dittmann et 

al. 2009; Benger et al. 2010). Occasionally, fragile parts of a reef may break off and 

be carried downstream by tides and currents; they can then form a new reef some 

distance away (Thomas & Thorp 1994; Fornós et al. 1997; pers. comm. B. Pernet). 
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Figure 5 Larvae of Spirobranchus cariniferus 25 days after hatching; 
Figure a & b: metatrochophora larvae at different point of their development; 
Figure c: settled and attached larvae in its secondary tube developing to a juvenile 
individual; ci: cillia; oc: ocellus (eyes); st: secondary tube; Individuals in Figure a & c are 
stained with Nile blue; Scale bar: a: 50 µm; b & c: 100 µm. Source: Wolf (2020). 
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3. RESEARCH ON INTRODUCED POPULATIONS OF 

FICOPOMATUS ENIGMATICUS 

The introduction of F. enigmaticus to global coastal regions has likely occurred via 

ballast water transport, biofouling of submerged hull surfaces and potentially airborne 

transport by birds (Davidson et al. 2010; Patti & Gambi 2001; Costa et al. 2019; 

Giangrande et al. 2020). A comprehensive account of the global distribution of F. 

enigmaticus is provided in Dittmann et al. (2009), table 1, p. 13, which has been 

updated and included as Appendix A.1 of this report. In the sections below, we 

summarise available information2 on F. enigmaticus’ impacts on invaded locations, 

and the nature and outcomes of the management and control efforts undertaken. 

 

 

3.1. Europe 

Since the first description of F. enigmaticus in the early 20th century, the majority of 

work on the reproductive biology and recruitment of this worm has been undertaken in 

the UK (Dixon 1977, 1981; Thomas & Thorp 1994). With regard to studies on the 

introduction, expansion and impacts of F. enigmaticus, the work by Bianchi & Morri 

(1996, 2001) is particularly significant. They recorded the worm’s initial establishment 

in Italy’s Po River estuary and subsequently documented the increase in local 

population (reef) size from 15 ha in 1979 to 200 ha in 2000, an average increase of 9 

ha per year. 

 

Ficopomatus enigmaticus is seen as a nuisance to tourism in Menorca, Spain, as its 

extensive reefs can cause injuries, degrade the aesthetics of beaches and double 

sedimentation rates (Fornós et al. 1997). Its excessive fouling aggregations and rapid 

growth also impact boat and marina operators in the UK (pers. comm. G. Watson). In 

areas of the eastern Adriatic Sea, F. enigmaticus reefs increase local sedimentation 

rates and support recruitment of the non-indigenous bivalve Arcuatula senhousia 

(Asian date mussel) Benson, 1842 (Figure 6) (Despalatović et al. 2013; Shumka et al. 

2014), which is also a non-indigenous species to New Zealand (Hayward et al. 2008). 

 
2  Obtained from the published literature and via recent dialogue with experts involved in F. enigmaticus research 

or management. See Appendix Table A.2: Questionnaire sent to international experts. These experts are 
identified in the Acknowledgements section. 
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Figure 6 Arcuatula senhousia (Asian date mussel) found in Izmir Bay, Turkey. Source: Doğan et 
al. (2014). 

 

 

Despite the extensive population growth and associated impacts of F. enigmaticus 

documented for the areas listed above, it appears that no substantial efforts have 

been made to control or eradicate F. enigmaticus in Europe. A case of attempted 

management was reported in a PhD thesis from the 1970s, in which chlorine was 

applied to a small population observed at a power station in Tilbury, UK (Dixon 1977). 

While daily application of the treatment was reported to have no effect on the worms, 

details regarding the treatment concentration and the conditions under which it was 

applied were sparse, precluding meaningful conclusions regarding potential efficacy of 

chlorine exposure. Notably, in some areas (e.g. the Black Sea and Italy),  

F. enigmaticus is considered potentially beneficial to the environment, as it can 

increase biodiversity (via the development of complex reef habitats) and filter organic 

pollutants from contaminated waterbodies (Bianchi & Morri 1996, 2001; Gubbay et al. 

2016; Micu et al. 2016; pers. comm. A. Giangrande). 

 

 

3.2. Africa 

Ficopomatus enigmaticus was first identified in South Africa by J.H. Day in 1951 

(pers. comm. T. Robinson-Smythe). Today, the species is found along the entire 

coastline of South Africa. As this distribution includes tropical as well as temperate 

waters, it may be that other species of the genus Ficopomatus also occur in South 

Africa but have been misidentified as F. enigmaticus. This may also be the case for F. 

enigmaticus populations reported from Lagos, Nigeria in 1953 (Hill 1967). 

 

In South Africa, views on F. enigmaticus are somewhat controversial. In the Zandvlei 

estuary, its water filtering capacity is regarded as beneficial to the environment 

(Davies et al. 1989; pers. comm. T. Robinson-Smythe). However, more recent reports 

about the Zandvlei location and other South African estuaries describe the growing 
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worm populations as a nuisance to recreational activities such as canoeing and 

fishing (McQuaid & Griffiths 2014; pers. comm. T. Robinson-Smythe). To date, only 

the population at the Zandvlei estuary and adjacent marina have been monitored. In 

2012, a total reef area of 6843 m2 was reported (McQuaid & Griffiths 2014).  

 

The only attempts at population control have been in Cape Town at the Zandvlei 

estuary. In 2015, recreational canoers used handheld spades to remove  ~30 m2 of F. 

enigmaticus aggregations. This was repeated after two years, presumably following 

recovery and regrowth of worms within the target area. A sustained decrease in 

population size and density was observed in the years following this removal attempt, 

but this may have been a consequence of sustained droughts in the region and 

associated changes to water levels and temperatures that occurred during the same 

period (pers. comm. T. Robinson-Smythe). Limited rainfall can cause an increase in 

temperature and salinity, the latter via a reduction in the supply of fresh water from 

rivers to estuaries. The topographic profile of the estuary affects the local population 

structure of F. enigmaticus. If the estuary is below sea level, the salinity will increase 

further upstream in the river through elevated saltwater influx. In such instances (see 

section 3.5 Australia), recruitment of F. enigmatius is likely to occur upstream of the 

parent populations. If an estuary is at sea level, populations of F. enigmaticus will 

likely proliferate in limited regions where salt and freshwater mix and the salinity is 

between 5 and 30 psu (see section 3.4 South America). 

 

Interesting observations were made at Lake Tunis, Tunisia, an area where F. 

enigmaticus has been observed since the 1950s (Diawara et al. 2008). The northern 

lagoon near the city of Tunis was known as one of the most polluted and eutrophic 

waterbodies in the Mediterranean Sea. It was initially suggested that because of F. 

enigmaticus’ large local population size and high filtration rate, the presence of the 

worms would further reduce oxygen levels and increase eutrophication (Keene 1980). 

However, recent attempts at restoration of this ecosystem via curbing pollution have 

achieved a significant reduction in eutrophication. Notably, this appeared to result in a 

concomitant decline (and in some areas disappearance) of F. enigmaticus 

populations, suggesting a possible connection between eutrophication and reef 

growth (Diawara et al. 2008). To date, there have been no deliberate attempts to 

control or eradicate F. enigmaticus in Tunisia. 

 

 

3.3. North America 

3.3.1. Pacific Coast 

Ficopomatus enigmaticus was first observed in North America in San Francisco Bay 

in the 1920s (Pernet et al. 2016; Yee et al. 2019). For around 70 years, it appeared to 

remain within this location before a new population was discovered in the late 1990s 

in the Elkhorn Slough marine reserve (Wasson et al. 2001). Since then, 
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F. enigmaticus has also been reported in other locations in California, including the 

port of Los Angeles (Cohen et al. 2000; Pernet et al. 2016) and estuaries in Santa 

Barbara (Yee et al. 2019). However, in the absence of targeted surveys, many 

observations were opportunistic and the species may have spread further than 

currently reported (Yee et al. 2019). 

 

Research at the Elkhorn Slough marine reserve shows that in terms of space,  

F. enigmaticus outcompetes the native oyster Ostrea conchaphila Carpenter, 1857 

(Figure 7). In addition, reefs of F. enigmaticus have also been shown to support up to 

three times more non-indigenous species than native oyster reefs (Heiman et al. 

2008). The association between F. enigmaticus and other non-indigenous species has 

also been reported from other locations along the US Pacific coast (pers. comm. B. 

Pernet). Reefs of F. enigmaticus likely create complex habitats that enable the 

establishment of non-indigenous species that would not be able to colonise the 

original, pre-Ficopomatus soft-sediment environments (Heiman et al. 2008). 

 

 

 
 

Figure 7 Ficopomatus enigmaticus aggregation on old wooden pillars in the Elkhorn Slough 
marine reserve, USA.  Source: Noble & Zabin (2014); Photo credit: C Zablin 
(Smithsonian). 

 

 

Recent genetic studies established the presence of two genotypes of F. enigmaticus 

along the Californian coastline (Yee et al. 2019). This could have two possible causes: 

first, one genotype may be more adapted to certain environmental conditions, 

resulting in geographic separation of the two genotypes without a separation in 

phenotypes or speciation (pers. comm. B. Pernet); second, F. enigmaticus was 

introduced to the US Pacific coast multiple times from different donor regions, which 
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increases the potential gene pool and therefore could stabilise the populations 

(Roman & Darling 2007). A population with a more diverse gene pool presents a 

larger challenge for mitigation and eradication, as it may have a higher tolerance to 

stressors. In addition, the risk of reintroduction following eradication may be elevated 

when there are multiple donor regions. To date, no efforts appear to have been made 

to manage or eliminate F. enigmaticus from areas along the US Pacific coast. 

 

3.3.2. Atlantic Coast 

Ficopomatus enigmaticus was first discovered on the US Atlantic coast in 1951 at 

Rockport, Texas. Further discoveries followed in Barnegat Bay, New Jersey in the 

1980s (ten Hove & Weerdenburg 1978; Hoagland & Turner 1980); more recently,  

F. enigmaticus has been found in estuaries in Florida and South Carolina (Bastida-

Zavala et al. 2017). Despite being widespread and attaining high levels of abundance 

in some of these locations, no formal research has been undertaken on its impacts on 

Atlantic coastal ecosystems (Bastida-Zavala et al. 2017), and there have been no 

reports of eradication or control attempts. 

 

 

3.4. South America 

Ficopomatus enigmaticus has established populations in coastal areas in southern 

Uruguay and northern Argentina (Orensanz et al. 2002; Muniz et al. 2005; 

Borthagaray et al. 2006; pers. comm. Schwindt). The species was first detected in the 

Quequén estuary, Argentina in the 1940s and has since increased in distribution and 

abundance. Ficopomatus enigmaticus is now observed in all estuaries along the 

Argentinian coastline (Orensanz et al. 2002; Obenat et al. 2006; pers. comm. 

Schwindt). In the 1960s, field studies described well-established populations in the 

Mar Chiquita lagoon, located at the northern end of the Argentinian coastline. 

Subsequently, this lagoon became the most studied area for F. enigmaticus incursion 

in South America. Unlike in the Po River estuary,Italy, where F. enigmaticus 

populations grow into elongated and large fringing reefs, F. enigmaticus reefs at the 

Mar Chiquita lagoon are more or less separate structures of up to 0.5 m in height and 

7 m in diametre (Figure 8) (Orensanz et al. 2002; Schwindt et al. 2004b; Montefalcone 

et al. 2022). By 1999, reef density in the Mar Chiquita lagoon had reached an average 

of 89 reefs/ha (Figure 9), an increase of 18 reefs/ha since the 1970s. In some areas of 

the lagoon, up to 370 individual worm reefs can be found per hectare (Schwindt et al. 

2004a, 2004b). Overall, 86.3% (3968 ha) of the area of Mar Chiquita lagoon is 

occupied by F. enigmaticus (Schwindt et al. 2001). 

 

Because of multidirectional currents, the reef mass in the Mar Chiquita lagoon grows 

as a circular isolated reef rather than a linear reef (such as in Italy). Furthermore, the 

growth of the overall reef mass at this location is limited by the low occurrence of 

‘nuclei’ (see above), such as mollusc shells, glass bottles, reef fragments and other 
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hard structures (Obenat & Pezzani 1994; Thomas & Thorp 1994; Schwindt & Iribarne 

2000; Schwindt et al. 2001, 2004a; Luppi & Bas 2002; Peria & Pernet 2019). 

 

 

 
 

Figure 8 Ficopomatus enigmaticus reefs at the Mar Chiquita lagoon, Argentina; hat used as 
reference has a height of 10 cm. Source: Schwindt & Iribane (2000), figure 1, p. 74. 
Photo credit: A Bortolus. 
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Figure 9 Aerial view of Ficopomatus enigmaticus reefs at the Mar Chiquita lagoon, Argentina. 
Each ‘dot’ is a reef. Source: Cohen (2011); Photo credit: A. Bortolus. 

 

 

Ficopomatus enigmaticus reefs around Argentina are thought to have considerable 

environmental impacts. They function as large sediment traps and retain particles that 

would otherwise be transported into the ocean. Furthermore, the niches created by 

their complexity result in changes to the original assemblage composition of lagoon 

habitats and regional species distributions (Orensanz et al. 2002; Schwindt et al. 

2001; Bazterrica et al. 2011; Bruschetti et al. 2011). 

 

First attempts at manual removal of F. enigmaticus reefs from the Mar Chiquita lagoon 

were made about 30 years ago. Unfortunately, these attempts resulted in a net 

increase in reefs, as reef fragments created by the removal initiative were left behind 

and functioned as new reef nuclei. A second attempt was made 10 years later, when 

a 310 m ‘path’ was cleared through the lagoon’s reef matrix by the local tourism 

industry and recreational fishermen. This path requires ongoing maintenance to 

prevent regrowth, which is associated with significant cost (pers. comm. Schwindt). 
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3.5. Australia 

In Australia, F. enigmaticus was first observed at Sydney’s Cooks River in 1910, but 

was not described until the 1950s (Dew 1959; Styan et al. 2017). However, recent 

assessments suggest that the species was actually introduced in the 1930s, likely 

from the coast of India (ten Hove & Weerdenburg 1978; Pollard & Hutchings 1990; 

Liñero-Arana & Díaz-Díaz 2012; Bastida-Zavala et al. 2017). Consequently, there is 

uncertainty regarding the timing of the arrival of F. enigmaticus. Based on recent 

studies, the current extension of F. enigmaticus appears to be limited to the south 

Australian coastline between Perth and Sydney. However, the current distribution of 

F. enigmaticus is based on the limited number of available records, rather than being 

informed by any geographical or environmental delimiters (Styan et al. 2017).  

 

Adequate information is available for populations in the Lower Lakes, South Australia, 

for example, Lake Alexandrina and Coorong near Adelaide. Aerial imagery of the 

Mundoo Channel, Coorong has been used to describe the growth of F. engimaticus 

reef structures since the 1970s. By 2003, reefs measuring up to 250 m2 were present 

in the Mundoo Channel. While surveys in 2008 reported a decline in reef size, which 

was potentially caused by an elevated saltwater influx from the open coast (Dittmann 

et al. 2009; Benger et al. 2010), most of the reefs observed in the Mundoo Channel in 

1989 are still present. Notably, during a dry summer in 2007/2008, the water level in 

the Lower Lakes dropped below sea level. This led to increased seawater influx and 

elevated salinities and resulted in a 23 km upstream extension of F. enigmaticus’ local 

recruitment range. By 2009, 288 ha of Lake Alexandrina (total area 58,000 ha) were 

covered by worm reefs (Dittmann et al. 2009). Subsequently, recruits of F. 

enigmaticus appeared up to 32.5 km upstream from the Golwa Barrage (a man-made 

land barrier). The total extent of F. enigmaticus populations around the Lower Lakes 

has been estimated as 6320 ha (Benger et al. 2010). 

 

As in Argentina, F. enigmaticus in the Lower Lakes of South Australia utilise mollusc, 

crab and turtle shells as nuclei for new reefs (Benger et al. 2010). It is also suggested 

that turtle shells function as an additional distribution mechanism for this serpulin 

(Figure 10). Extensive colonisation of shells by worms resulted in the death of turtles, 

thus local efforts were made by the community to clean the shells of resident turtles 

(Benger et al. 2010). Shells of the bivalve Velesunio ambiguus Phillippi, 1847 

(billabong mussel, Figure 11) also seem to attract F. enigmaticus recruits, possibly 

making areas with high mussel densities particularly prone to extensive formations of 

worm reefs (Benger et al. 2010; Dittmann et al. 2019). 

 

In addition to California, at least two coexisting genotypes of F. enigmaticus have 

been identified in Australia (Styan et al. 2017). As identified in the North American 

populations, this could be the result of multiple introductions and may increase the 

tolerance of the overall population to stressors (Roman & Darling 2007). 
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Figure 10 Ficopomatus enigmaticus recruits on the shell of a turtle at the Lower Lakes, Australia. 
Source: Benger et al. (2010), figure 3, p. 7; Photo credit: K. Bartley and B. Cowan. 

 

 

 
 

Figure 11 Ficopomatus enigmaticus settled on a shell of Velesunio ambiguus at the Lower Lakes, 
Australia. Source: Benger et al. (2010), figure 6, p. 9; Photo credit: S. Dittmann. 
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3.6. Summary of insights from global locations subject to 

Ficopomatus enigmaticus invasion 

Based on our communication and correspondence with global experts and our review 

of the available literature, we conclude that most observations regarding the global, 

regional and local spread of F. enigmaticus are opportunistic and untargeted. As a 

consequence, the true distribution and rate of spread of this species is most likely 

underestimated. An additional challenge is that the worm’s initial taxonomic 

misidentification resulted in a confused and unreliable understanding of its 

environmental requirements and ecology, particularly with regard to its reproductive 

biology and recruitment seasonality. 

 

The environmental impacts of F. enigmaticus are understudied across the species’ 

and genus’ current range and remain largely inconclusive. In Europe, for example, 

where the majority of study efforts of F. enigmaticus have been concentrated, some 

populations are seen as beneficial, while others only 500 to 1000 km away are 

regarded as high-impact invaders. Geographically replicated ecological studies are 

therefore required to reliably identify and quantify the impacts and potential ecosystem 

services of F. enigmaticus in coastal ecosystems. 

 

The lack of clarity regarding F. enigmaticus’ impacts has likely contributed to the low 

number of attempts to manage local and regional populations. Most initiatives are not 

mentioned in the literature, but rather have been conveyed to us via personal 

communication with regional experts. Moreover, as these initiatives have primarily 

involved small-scale efforts by the public or local tourism operators, there is no robust 

information available regarding their scale (intensity and duration), cost or level of 

success. 

 

 

3.7. Recommendations for HBRC 

Despite the lack of published information on the population dynamics, impacts and 

attempted eradication or control of non-indigenous F. enigmaticus populations 

worldwide, our review presents several important conclusions. 

 

First, from the information provided to us by HBRC and our site visits, it appears that 

the extent of F. enigmaticus infestations around the Hawke’s Bay region is relatively 

small compared to invasive populations in other parts of the world. This is a significant 

advantage for the consideration and implementation of potential population control 

measures. 

 

Second, the control attempts for global F. enigmaticus populations have generally 

been unsuccessful. However, these attempts seem to have been undertaken 

sporadically, at a relatively small scale and not in a sustained manner following a 
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medium- to long-term strategy. We consider that the lack of reported success 

overseas should not cause concern for the New Zealand context, and population 

control of F. enigmaticus in the Hawke’s Bay region may be possible. 

 

Third, there are a number of helpful findings from the previous control attempts and 

the information gathered and reported in this review can be used to inform potential 

management approaches for F. enigmaticus in the Hawke’s Bay region. For example, 

control measures should not be undertaken when worms may release gametes or 

larvae, and control measures in soft-sediment environments need to ensure that no 

reef material / fragments are generated or, if unavoidable, left behind, as these can 

act as nuclei for the formation of new reefs. There are also indications (although not 

based on rigorous data) that variations in eutrophication and salinity levels may 

influence population dynamics of this species. The incorporation of these and other 

conclusions into HBRC’s approach would strengthen the chances of successfully 

managing the F. enigmaticus populations in the Hawke’s Bay region. 

 

In conclusion, the information gathered during this review suggests that population 

control attempts in the Hawke’s Bay region should not be ruled out. Instead, we 

recommend that HBRC’s original strategy should be given primary importance, 

resulting in the following activities and outputs: 

 

1. Recruitment monitoring for F. enigmaticus. A trial phase for method and 

protocol development was commenced by HBRC in December 2022. 

2. Preparation of a feasibility assessment that examines optional approaches 

against a range of criteria and recommends methods and tactics for 

addressing invasive worm reefs around the Ahuriri estuary and Clive River (if 

this approach is undertaken by Council). This phase is already funded (via the 

MBIE EnviroLink scheme) and due on 31 March 2023. 

3. A meeting with HBRC to discuss our recommendations (from item 2) and 

develop an agreed strategy for HBRC regarding F. enigmaticus population 

control. 
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5. APPENDICES 

Table A.1 Global distribution of Ficopomatus enigmaticus compiled by Dittman et al. (2009), table 1, p. 8, with updated references and distribution range (in blue 
letters) and further comments. References from original table can be found in Dittmann et al. (2009). 

Continent Country or region Source  Comment 

Europe Baltic Sea Rasmussen 1958; Leppakoski & Olenin 2000 Within the last century and with the exception of Ireland, Ficopomatus enigmaticus 
was only able to establish aggregations in natural environments south of Swansea 
and Emsworth (UK) (Kilty and Guiry 1973; Thomas and Thorp 1994; Thorp 1994). 
Any established population north of this region was found warm water effluent of 
power stations or similar (ten Hove 1974; van der Velde et al. 1993). Only within the 
last two decades has F. enigmaticus became established in estuaries of the Baltic 
Sea as a result of temperature increases associated with climate change (Weitzel 
2021). 

Denmark Wesenberg-Lund 1941; Rasmussen 1958; Hartmann- Schröder 1971; 
Jensen & Knudsen 2005 

Germany Hartmann-Schröder 1967, 1971; Kühl 1977 

Netherlands  Wolff 1968, 1969; ten Hove 1974; Vaas 1975; Velde et al. 1993 

Belgium Leloup & Lefevere 1952 

France Fauvel 1923, 1933; Fischer 1925; Maury 1937; Bordet 1939; Remy 1948; 
Petit & Rullier 1952, 1956; Aleem 1952; Euzet & Poujol 1963; Rullier 1943, 
1948, 1955b 

England Monro 1924; Tebble 1953, 1956; Naylor 1959; Markowski 1962; Gee 1963; 
Nelson-Smith 1967; Harris 1970; Dixon 1977, 1980, 1981; Thorp 1987, 
1994; Thomas & Thorp 1994; Joyce et al. 2005; see Zibrowius & Thorp 
1989 and Eno et al. 1997 

Ireland  Kilty & Guiry 1973  

Spain Rioja 1923, 1924, 1931; Fischer-Piette 1951; Martinez-Taberner et al. 
1993; Fornos et al. 1997 

Research from the Balearic Islands suggests that F. enigmaticus reefs at least 
double the sedimentation rate (Fornós et al. 1997). 

Portugal Freitas at al. 1994  

Azores  Costa et al. 2019 First record in the Macaronesia region, possible introduction through migratory birds 
into Landlock saltmarsh. 

Italy Lindegg 1934; Cognetti 1954; Rullier 1955a; Sichel 1965; Granda & Sabelli 
1973; Bianchi 1981, 1983a, 1983b; Bianchi et al. 1984, 1995; Aliani et al. 
1995; Bianchi & Morri 1996, 2001; Ambrogi 2000; Bertozzi et al. 2002 

Particularly in the Po River estuary (northern Italy), reefs of F. enigmaticus are seen 
as beneficial to the environment due to increases in oxygenation and biodiversity 
(Bianchi and Morri, 1996; Giangrande et al. 2020). 

Albania Shumka et al. 2014  

Croatia Despalatović et al. 2013 In Croatia, F. enigmaticus facilitate the recruitment of the invasive bivalve Arcuatula 
senhousia Benson, 1842 and increase sedimentation. However, F. enigmaticus 
populations are seen as favourable along Italy’s northern Adriatic coastline; 500 km 
southwest in the Adriatic Sea, researchers described this species as problematic due 
to ecological and nuisance impacts in estuaries (Despalatović et al. 2013). 

Greece Bogdanos & Satsmadjis 1992  

Turkey Ergen 1976  

Bulgaria (Black Sea) Marinov 1960 Particularly in the Black Sea (including Romania), F. enigmaticus is seen as 
beneficial due to their ability to filter and withstand pollution while increasing habitat 
diversity and biodiversity. 
In 2016, biogenic reefs of F. enigmaticus were included in the European Red List of 
Habitats (Gubbay et al. 2016; Micu et al. 2016). 

Russia (Black Sea) Soldatova & Turpaeva 1960; Turpaeva 1961; Turpaeva et al. 1963; 
Shurova & Losovskaya 2003 

Romania Micu et al. 2016 

Ukraine Micu et al. 2016 

Georgia Micu et al. 2016 

Caspian Sea Bogoroditskiy 1963; Kasymov 1982  
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Table A.1 continued: Global distribution of Ficopomatus enigmaticus compiled by Dittman et al. (2009), table 1, p. 8, with updated references and distribution 
range (in blue letters) and further comments. References from original table can be found in Dittmann et al. (2009). 

Continent Country or region Source  Comment 

Africa Tunis Seurat 1927; Heldt 1944; Vuillemin 1952, 1954, 1958, 1964;  Zibrowius 
1978;  Keene 1980; Zaouali & Baeten 1983; Ben Charrada 1995; Diawara 
et al. 2008 

Abundance of F. enigmaticus may be linked to the local influx of organic matter a 
reduction in water temperature (Diawara et al. 2008). 

Egypt Kirkegaard 1959; Zibrowius 1973  

West Africa Samaan & Aleem 1972; Ghobashy & Ghobashy 2005 Similar to the initial recorded appearance of F. enigmaticus in Nigeria, there is also a 
possibility that the discovery of worms in West Africa may have been the congener 
F. ushakovia (Dittmann et al. 2009; Hill 1967). 

Côte d'Ivoire Rullier 1955c 

South Africa Day 1951; Stewart & Davies 1986; Davies et al. 1989 The appearance of F. enigmaticus in South Africa is widely accepted; however, due 
to the wide distribution across different temperature zones, it is conceivable that 
more than one species of the genus Ficopomatus is present; however further 
examination is required. Contradicting views persist in South Africa regarding the 
impacts versus benefits of reefs formed by Ficopomatus spp. 

Asia Japan Kajihara et al. 1976; Okamoto et al. 1995; Okamoto & Watanabe 1997; 
Nishi 2003; Iwasaki et al. 2004 

The currently most accepted hypothesis is that the whole genus Ficopomatus has its 
orgins in the Indo-Pacific (Fauvel 1932; Pollard & Hutchings 1990; Bastida-Zavala 
2017). Hence, its distribution throughout Asia is likely under reported. 

Australasia  Australia Monro 1938b; Allen 1953; Dew 1959; Straughan 1966, 1971 1972a; 
Geddes & Butler 1984; Pollard & Hutchings 1990; Hewitt 2002; Johnston & 
Keough 2003; Hewitt et al. 2004 

 

New Zealand Read & Gordon 1991; Probert 1993; Forrest et al. 1997; Cranfield et al. 
1998; Hayward & Morley 2005; Inglis et al. 2006a, 2006b; Kelly 2008 

 

North 
America 

USA (Pacific 
Coast) 

California: Smith & Carlton 1975; Morris et al. 1980; Cohen & Carlton 
1995; Heiman 2006; Heiman et al. 2008;  Pernet et al. 2016; Peria & 
Pernet 2019; Yee et al. 2019  

 

USA (Atlantic 
Coast)  

New Jersey: Hoagland & Turner 1980   

Maryland: Ruiz et al. 2000; Jewett et al. 2005 

Texas: Hartman 1952; ten Hove & Weerdenburg 1978 

Florida: Bastida-Zavala et al. 2017 

South Carolina: Bastida-Zavala et al. 2017 

South 
America 

Uruguay Monro 1938a; Muniz et al. 2005a; Borthagaray et al. 2006  

Argentina Rioja 1943; Orensanz & Estivariz 1971; Schwindt 1997; Obenat & Pezzani 
1989, 1994; Spivak et al. 1994; Schwindt & Iribarne 1998, 2000; Obenat 
2001; Schwindt et al. 2001; Luppi & Bas 2002; Schwindt et al. 2004a, 
2004b; Obenat et al. 2006; Bruschetti et al. 2008; Bazterrica et al. 2011; 
Bruschetti et al. 2011 
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Table A.2 Questionnaire sent to international experts on Ficopomatus enigmaticus to help 
with preparation for discussions via video conferences. For our colleagues from 
Mexico, we used a questionaire with the same questions but referring to  
F. ushakovi and F. miamiensis. 

 
1. Geographic area and first record of F. enigmaticus in this area: -  

 
 

2. Is F. enigmaticus perceived as a problem to this area? 
 
 
If yes, how soon following its first record did it reach problem status? 
 
 
What are the species’ local/regional impacts on environment, infrastructure or other aspects?  
 
 
 

3. What is the current extent of the population? 
 
 
 

4. Did you examine the temperature and salinity range in which F. enigmaticus reproduces in your area 
(and if yes, what is it)?  
 
 
 

5. Did you examine recruitment of F. enigmaticus in your area? If yes, please provide some information 
on seasonality, substrates affected tidal height and other aspects. 
 
 
 

6. How far upstream (from the coast) did you encounter F. enigmaticus populations? 
 
 
 

7. Did you notice any effects of freshwater influx on F. enigmaticus population or recruitment? 
 
 
 

8. Did you notice any effects on F. enigmaticus populations by the occurrence of organic or inorganic 
pollution? 
 
 
 

9. Were there attempts to remove or otherwise treat F. enigmaticus populations/reefs in the area? If yes, 
which methods were used, when how frequently and for how long? 
 
 
How effective would you say were these interventions, and what factors do you think contributed to 
the observed level of success (or lack of success)? 
 
 
 

10.  Do you have any additional advice for anybody engaging in future control of F. enigmaticus 
populations? 
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Table A.3 Studied populations: list of countries and regions reviewed in this report, and information on population size and mitigation strategies (if 
any). 

 

Country First record Biggest 
observed 
population at 

Size of 
biggest 
observed 
population 

Impacts Control attempts 

United Kingdom London 1921 Millpond at 
Emsworth (West 
Sussex) 

NA Fouling on ship hulls, marina 
infrastructure, power stations. 

1937: Small worm population discovered at Weymouth harbour in water body 
adjacent to freshwater lakes. Infested surfaces were treated with antifouling paint 
followed by increasing salinity in waterbodies between May and September to hinder 
larval development. Thereafter, the gradual return to freshwater appeared to kill the 
adult population. 

 

1972: Ficopomatus enigmaticus was discovered on vertical walls at the Tilbury 
Power Station. For one year, the organisms where exposed daily to chlorine 
(0.5 ppm). This treatment did not seem to not affect the population (Dixon 1977, p. 
65).  

 

Spain Spain 1923 Albufera at Menorca NA Fouling on ship hulls and 
pumps. Doubling 
sedimentation rates. 

NA 

Croatia ? Neretva River Delta NA Supports recruitment of other 
non-native species such as 
Arcuatula senhousia. 

Increase in sedimentation.  

NA 

Italy ? Po River Delta 200 ha (2000) Increased oxygenation, 
increased biodiversity.  

NA 

      

South Africa ? 1951 Zandvlei estuary 0.6 ha (2014) Prevents waterflow and 
recreational use. Improved 
water quality through filtration. 
Change in fauna and flora 
composition of the estuary.  

2015 & 2017: manual removal of approx. 30 m2 of reefs, but no persistent effect. 

Currently, population decline in Berg River, Milnerton Lagoon and Zandvlei is without 
explanation, but could potentially be caused by a long dry spell.  

Tunisia Tunis 1921 Lake of Tunis NA Increase sedimentation and 
euthrophication, removal of 
oxygen and nutrient leads to 
larger algae bloom.  

Population significantly reduced in 2008 and was potentially caused by oligotrophic 
environment after environmental policy changes. 
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Table A.3 continued: Studied populations: list of countries and regions reviewed in this report, and information on population size and mitigation 
strategies (if any). 

 

Country First record Biggest 
observed 
population at 

Size of 
biggest 
observed 
population 

Impacts Control attempts 

Argentina Quequén 
estuary in 1943 
(approx. 
38°33′S 
58°42′W) 

Mar Chiquita lagoon 
(37°37′S 57°18′W) 

~3900 ha Affecting flora and fauna 
communities by providing 
substrate and shelter to 
certain species including 
predators, increased 
biodiversity, also more non-
native species. Reefs function 
as sediment traps: negative 
effects on tourism, difficult for 
navigation and fishing. 

Before 1980, reefs were broken apart during a control attempt. Fragments remained 
in the water body and founded new reefs. Since the 1990s, a path of around 310 m 
length is regularly cleared (by local industry) to allow recreational usage. 

      

USA San Fransico 
Bay 1920 

NA NA Fouling on equipment. 
Facilitates the recruitment of 
other non-native species. 

NA 

      

Australia Cooks River 
(Sydney), 1910 

Lower Lakes (South 
Australia) 

6320 ha Fouling on shellfish, crabs and 
turtles, can potentially be fatal 
for host organism. 

NA 
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